Abstract

We introduce a new approach to plasmonic biosensing with superior biosensing properties based on spectroscopy of an electromagnetic mode guided by a monolayer of sparsely distributed colloidal plasmonic nanoparticles. The theoretical prediction of optical and sensing performance is confirmed by an experimental study in which adsorption of biomolecules on the sensor surface is studied. An unprecedentedly high figure of merit related to surface refractive index changes (FOMS) is demonstrated for distances of the biomolecules from the sensor surface up to 30 nm, which makes this approach a promising candidate for localized biosensing.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-layered metal grating for high-performance refractive index sensing

Guozhen Li, Yang Shen, Guohui Xiao, and Chongjun Jin
Opt. Express 23(7) 8995-9003 (2015)

Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model

Barbora Špačková and Jiří Homola
Opt. Express 21(22) 27490-27502 (2013)

Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription