Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dielectric laser electron acceleration in a dual pillar grating with a distributed Bragg reflector

Not Accessible

Your library or personal account may give you access

Abstract

We report on the efficacy of a novel design for dielectric laser accelerators by adding a distributed Bragg reflector (DBR) to a dual pillar grating accelerating structure. This mimics a double-sided laser illumination, resulting in an enhanced longitudinal electric field while reducing the deflecting transverse effects when compared to single-sided illumination. We improve the coupling efficiency of the incident electric field into the accelerating mode by 57%. The 12 μm long structures accelerate sub-relativistic 28 keV electrons with gradients of up to 200 MeV/m in theory and 133 MeV/m in practice. This Letter shows how lithographically produced nano-structures help to make novel laser accelerators more efficient.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures

Kenneth J. Leedle, Andrew Ceballos, Huiyang Deng, Olav Solgaard, R. Fabian Pease, Robert L. Byer, and James S. Harris
Opt. Lett. 40(18) 4344-4347 (2015)

Phase-dependent laser acceleration of electrons with symmetrically driven silicon dual pillar gratings

Kenneth J. Leedle, Dylan S. Black, Yu Miao, Karel E. Urbanek, Andrew Ceballos, Huiyang Deng, James S. Harris, Olav Solgaard, and Robert L. Byer
Opt. Lett. 43(9) 2181-2184 (2018)

Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

Kent P. Wootton, Ziran Wu, Benjamin M. Cowan, Adi Hanuka, Igor V. Makasyuk, Edgar A. Peralta, Ken Soong, Robert L. Byer, and R. Joel England
Opt. Lett. 41(12) 2696-2699 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.