Abstract

Experimental demonstrations of silicon-on-insulator waveguide-based free-carrier effect modulators operating at 3.8 μm are presented. PIN diodes are used to inject carriers into the waveguides, and are configured to (a) use free-carrier electroabsorption to create a variable optical attenuator with 34 dB modulation depth and (b) use free-carrier electrorefraction with the PIN diodes acting as phase shifters in a Mach–Zehnder interferometer, achieving a VπLπ of 0.052  V·mm and a DC modulation depth of 22 dB. Modulation is demonstrated at data rates up to 125 Mbit/s.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ge-on-Si modulators operating at mid-infrared wavelengths up to 8  μm

Tiantian Li, Milos Nedeljkovic, Nannicha Hattasan, Wei Cao, Zhibo Qu, Callum G. Littlejohns, Jordi Soler Penades, Lorenzo Mastronardi, Vinita Mittal, Daniel Benedikovic, David J. Thomson, Frederic Y. Gardes, Hequan Wu, Zhiping Zhou, and Goran Z. Mashanovich
Photon. Res. 7(8) 828-836 (2019)

High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides

Ning-Ning Feng, Shirong Liao, Dazeng Feng, Po Dong, Dawei Zheng, Hong Liang, Roshanak Shafiiha, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(8) 7994-7999 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, Nat. Photonics 4, 495 (2010).
    [Crossref]
  2. G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, Opt. Express 19, 7112 (2011).
    [Crossref]
  3. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, Optica 4, 707 (2017).
    [Crossref]
  4. J. S. Penadés, A. Sánchez-Postigo, M. Nedeljkovic, A. Ortega-Moñux, J. G. Wangüemert-Pérez, Y. Xu, R. Halir, Z. Qu, A. Z. Khokhar, A. Osman, W. Cao, C. G. Littlejohns, P. Cheben, I. Molina-Fernández, and G. Z. Mashanovich, Opt. Lett. 43, 795 (2018).
    [Crossref]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
    [Crossref]
  6. D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
    [Crossref]
  7. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, Opt. Express 15, 17106 (2007).
    [Crossref]
  8. W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, Optica 5, 1055 (2018).
    [Crossref]
  9. M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, Opt. Express 20, 28009 (2012).
    [Crossref]
  10. M. J. R. Heck, Nanophotonics 6, 93 (2017).
    [Crossref]
  11. D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
    [Crossref]
  12. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, IEEE Photonics J. 3, 1171 (2011).
    [Crossref]
  13. D. E. Hagan and A. P. Knights, J. Opt. 19, 025801 (2017).
    [Crossref]
  14. G. Z. Mashanovich, M. Nedeljkovic, J. Soler-Penades, Z. Qu, W. Cao, A. Osman, Y. Wu, C. J. Stirling, Y. Qi, Y. X. Cheng, L. Reid, C. G. Littlejohns, J. Kang, Z. Zhao, M. Takenaka, T. Li, Z. Zhou, F. Y. Gardes, D. J. Thomson, and G. T. Reed, Opt. Mater. Express 8, 2276 (2018).
    [Crossref]
  15. Lumerical Solutions Inc., https://www.lumerical.com/ .
  16. M. Nedeljkovic, “Silicon photonic modulators for the mid-infrared,” Ph.D. dissertation (University of Southampton, 2013).
  17. R. Kitamura, L. Pilon, and M. Jonasz, Appl. Opt. 46, 8118 (2007).
    [Crossref]
  18. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  19. L. Yang, H. Chen, and J. Ding, 9th International Conference on Group IV Photonics (GFP) (2012), pp. 129–131.

2018 (3)

2017 (4)

M. J. R. Heck, Nanophotonics 6, 93 (2017).
[Crossref]

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, Optica 4, 707 (2017).
[Crossref]

D. E. Hagan and A. P. Knights, J. Opt. 19, 025801 (2017).
[Crossref]

2012 (2)

M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, Opt. Express 20, 28009 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

2011 (2)

2010 (2)

R. Soref, Nat. Photonics 4, 495 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[Crossref]

2007 (2)

Agarwal, A.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Alam, S.-U.

Alic, N.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

Assefa, S.

Barwicz, T.

Cao, W.

Cardenas, J.

Cheben, P.

Chen, H.

L. Yang, H. Chen, and J. Ding, 9th International Conference on Group IV Photonics (GFP) (2012), pp. 129–131.

Cheng, Y. X.

Ding, J.

L. Yang, H. Chen, and J. Ding, 9th International Conference on Group IV Photonics (GFP) (2012), pp. 129–131.

Fedeli, J. M.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

Gaeta, A. L.

Gardes, F.

Gardes, F. Y.

G. Z. Mashanovich, M. Nedeljkovic, J. Soler-Penades, Z. Qu, W. Cao, A. Osman, Y. Wu, C. J. Stirling, Y. Qi, Y. X. Cheng, L. Reid, C. G. Littlejohns, J. Kang, Z. Zhao, M. Takenaka, T. Li, Z. Zhou, F. Y. Gardes, D. J. Thomson, and G. T. Reed, Opt. Mater. Express 8, 2276 (2018).
[Crossref]

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[Crossref]

Gill, D. M.

Green, W. M. J.

Griffith, A. G.

Gu, T.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Hagan, D.

Hagan, D. E.

D. E. Hagan and A. P. Knights, J. Opt. 19, 025801 (2017).
[Crossref]

Halir, R.

Heck, M. J. R.

M. J. R. Heck, Nanophotonics 6, 93 (2017).
[Crossref]

Hu, J.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, Opt. Express 19, 7112 (2011).
[Crossref]

Ji, X.

Jonasz, M.

Kang, J.

Khokhar, A. Z.

Kita, D. M.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Kitamura, R.

Knights, A.

Knights, A. P.

D. E. Hagan and A. P. Knights, J. Opt. 19, 025801 (2017).
[Crossref]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

Li, K.

Li, T.

Lin, H.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Lipson, M.

Littlejohns, C. G.

Liu, S.

Luzinov, I.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[Crossref]

Mashanovich, G. Z.

Miller, S. A.

Milosevic, M. M.

Molina-Fernández, I.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

Nedeljkovic, M.

Ortega-Moñux, A.

Osman, A.

Owens, N.

Penadés, J. S.

Pilon, L.

Qi, Y.

Qu, Z.

Radic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

Reed, G. T.

Reid, L.

Rice, P. M.

Richardson, K.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

Rooks, M. J.

Rouifed, M. S.

Sánchez-Postigo, A.

Sekaric, L.

Shank, S. M.

Soler-Penades, J.

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, IEEE Photonics J. 3, 1171 (2011).
[Crossref]

R. Soref, Nat. Photonics 4, 495 (2010).
[Crossref]

Stirling, C. J.

Takenaka, M.

Teo, E. J.

Thomson, D. J.

Topuria, T.

Van Camp, M. A.

Vlasov, Y. A.

Wang, H.

Wang, J.

Wang, W.

Wangüemert-Pérez, J. G.

Wu, Y.

Xin, G.

Xiong, B.

Xu, Y.

Yang, L.

L. Yang, H. Chen, and J. Ding, 9th International Conference on Group IV Photonics (GFP) (2012), pp. 129–131.

Yu, M.

Zhang, W.

Zhao, Z.

Zhou, Z.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, IEEE J. Sel. Top. Quantum Electron. 23, 340 (2017).
[Crossref]

IEEE Photonics J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, IEEE Photonics J. 3, 1171 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, IEEE Photonics Technol. Lett. 24, 234 (2012).
[Crossref]

J. Opt. (1)

D. E. Hagan and A. P. Knights, J. Opt. 19, 025801 (2017).
[Crossref]

Nanophotonics (1)

M. J. R. Heck, Nanophotonics 6, 93 (2017).
[Crossref]

Nat. Photonics (2)

R. Soref, Nat. Photonics 4, 495 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (2)

Other (4)

Lumerical Solutions Inc., https://www.lumerical.com/ .

M. Nedeljkovic, “Silicon photonic modulators for the mid-infrared,” Ph.D. dissertation (University of Southampton, 2013).

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

L. Yang, H. Chen, and J. Ding, 9th International Conference on Group IV Photonics (GFP) (2012), pp. 129–131.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Optical microscope image of the spiral-shaped PIN electroabsorption modulator. P++ doped areas have been artificially colored in red, and N++ doped areas have been colored in blue. (b) Optical microscope image of the MZI electrorefraction type modulator.
Fig. 2.
Fig. 2. Schematic cross section of the SOI PIN diode.
Fig. 3.
Fig. 3. (a) Simulated propagation loss of the PIN junction integrated waveguide (whose cross section is shown in Fig. 2) with varying doping separation (S) at a wavelength of 3.8 μm. (b) The solid red and blue lines show experimentally measured waveguide loss spectra due to Ohmic contact doping with separations (S) of 1.5 and 2.0 μm, respectively. The dashed lines show the simulated doping loss for waveguides with the same nominal dimensions.
Fig. 4.
Fig. 4. (a) Measured absorption introduced into spiral-shaped electroabsorption modulators at a 3.8 μm wavelength with varying forward bias current, plotted for devices with varying contact separation (S). The current and absorption coefficient have both been divided by the PIN diode length, which is 2.0 mm for all of these devices. (b) Measured change in effective refractive index extracted from the transmission spectra of the MZI modulator, plotted against varying forward bias current per unit length applied to the 100 μm long phase shifter. (c) Normalized transmission spectra of the MZI modulator for varying applied forward bias voltage applied to the PIN diode in one arm. The markers show the measured points, and the solid lines show fitted theoretical MZI transmission curves. The device shown in (b) and (c) used contact separation S=1.5  μm.
Fig. 5.
Fig. 5. (a) Eye diagrams of (a) electroabsorption modulator at 60 Mbit/s and (b) MZI modulator at 125 Mbit/s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δα=1.69×1021ΔNe1.23+5.68×1020ΔNh1.15,
Δn=7.13×1021ΔNe0.989+9.71×1018ΔNh0.837.
Pout=Pin4(τ12+τ22+2τ1τ1cos(Δφ)).

Metrics