Abstract

We address dissipative soliton formation in modulated parity-time (PT)-symmetric continuous waveguide arrays composed from waveguides with amplifying and absorbing sections, whose density gradually increases (due to decreasing waveguide separation) either towards the center of the array or towards its edges. In such a structure, the level of gain/loss at which PT-symmetry gets broken depends on the direction of increase of waveguide density. Breakup of PT-symmetry occurs when eigenvalues of modes localized in the region where waveguide density is largest collide and move into a complex plane. In this regime of broken symmetry, the inclusion of focusing Kerr-type nonlinearity of the material and weak two-photon absorption allows to arrest the growth of amplitude of amplified modes and may lead to the appearance of stable attractors either in the center or at the edge of the waveguide array, depending on the type of array modulation. Such solitons can be stable; they acquire specific triangular shapes and notably broaden with increase of gain/loss level. Our results illustrate how spatial array modulation that breaks PT-symmetry “locally” can be used to control the specific location of dissipative solitons forming in the array.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
2D in-band solitons in PT-symmetric waveguide arrays

Dengchu Guo, Jing Xiao, Huijun Li, and Liangwei Dong
Opt. Lett. 41(19) 4457-4460 (2016)

Tailoring PT-symmetric soliton switch

A. Govindarajan, Amarendra K. Sarma, and M. Lakshmanan
Opt. Lett. 44(3) 663-666 (2019)

Bound states in the continuum in a two-dimensional PT-symmetric system

Yaroslav V. Kartashov, Carles Milián, Vladimir V. Konotop, and Lluis Torner
Opt. Lett. 43(3) 575-578 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics