Abstract

We propose and demonstrate the use of laser intensity modulation for the multiplexing and demultiplexing of fiber Bragg grating-based ultrasound sensors. The method utilizes an intensity modulator to modulate the output power of the laser with a frequency much higher than that of the ultrasounds. The high-frequency-modulated optical signal serves as a carrier signal. Ultrasonic signals impinged onto the sensor appear as the envelope of the carrier signal. In the frequency domain, the carrier signal and the sidebands encoded with the ultrasonic signal are separated from those of other channels and, thus, can be isolated using an electronic bandpass filter for crosstalk-free ultrasound detection. Each laser can be tuned to demodulate any sensor covered by the wavelength range of the laser, and a common photodetector is used for all channels. Both a theoretical analysis and experimental verification are provided to demonstrate the concept.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Passive quadrature demodulation of an ultrasonic fiber-optic interferometric sensor using a laser and an acousto-optic modulator

Guigen Liu, Yupeng Zhu, Zigeng Liu, and Ming Han
Opt. Lett. 44(11) 2756-2759 (2019)

Ultrasensitive ultrasound detection using an intracavity phase-shifted fiber Bragg grating in a self-injection-locked diode laser

Yupeng Zhu, Lingling Hu, Zigeng Liu, and Ming Han
Opt. Lett. 44(22) 5525-5528 (2019)

Polarization-insensitive, omnidirectional fiber-optic ultrasonic sensor with quadrature demodulation

Guigen Liu, Yupeng Zhu, Qiwen Sheng, and Ming Han
Opt. Lett. 45(15) 4164-4167 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription