Abstract

A new type of tilted-pulse-front pumped terahertz (THz) source has been demonstrated, which is based on a LiNbO3plane-parallel slab with an echelon structure on its input surface. Single-cycle pulses of 1 μJ energy and 0.30 THz central frequency have been generated with 5×104 efficiency from such a source. One order-of-magnitude increase in efficiency is expected by pumping a cryogenically cooled echelon of increased size and thickness with a Ti:sapphire laser. The use of a plane-parallel nonlinear optical crystal slab enables straightforward scaling to high THz pulse energies and the production of a symmetric THz beam with a uniform pulse shape for good focusability and high field strength.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation

György Tóth, László Pálfalvi, József A. Fülöp, Gergő Krizsán, Nicholas H. Matlis, Gábor Almási, and János Hebling
Opt. Express 27(5) 7762-7775 (2019)

Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation

László Pálfalvi, György Tóth, Levente Tokodi, Zsuzsanna Márton, József András Fülöp, Gábor Almási, and János Hebling
Opt. Express 25(24) 29560-29573 (2017)

Single-cycle scalable terahertz pulse source in reflection geometry

György Tóth, László Pálfalvi, Zoltán Tibai, Levente Tokodi, József A. Fülöp, Zsuzsanna Márton, Gábor Almási, and János Hebling
Opt. Express 27(21) 30681-30691 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013).
    [Crossref]
  2. D. Nicoletti and A. Cavalleri, Adv. Opt. Photonics 8, 401 (2016).
    [Crossref]
  3. D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
    [Crossref]
  4. L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, Phys. Rev. ST Accel. Beams. 17, 031301 (2014).
    [Crossref]
  5. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).
    [Crossref]
  6. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Opt. Express 18, 12311 (2010).
    [Crossref]
  7. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, Opt. Express 22, 20155 (2014).
    [Crossref]
  8. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).
    [Crossref]
  9. J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, Optica 3, 1075 (2016).
    [Crossref]
  10. M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, Opt. Lett. 39, 5439 (2014).
    [Crossref]
  11. Z. Ollmann, J. Hebling, and G. Almási, Appl. Phys. B 108, 821 (2012).
    [Crossref]
  12. L. Pálfalvi, Z. Ollmann, L. Tokodi, and J. Hebling, Opt. Express 24, 8156 (2016).
    [Crossref]
  13. L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, Opt. Express 25, 29560 (2017).
    [Crossref]
  14. B. K. Ofori-Okai, P. Sivarajah, W. Ronny Huang, and K. A. Nelson, Opt. Express 24, 5057 (2016).
    [Crossref]
  15. K. Murate, M. J. Roshtkhari, X. Ropagnol, and F. Blanchard, Opt. Lett. 43, 2090 (2018).
    [Crossref]
  16. J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
    [Crossref]
  17. J. A. Fülöp and J. Hebling, Recent Optical and Photonic Technologies, K. Y. Kim, ed. (InTech, 2010), Chap. 11.
  18. According to numerical simulations using an improved version of the model described in Ref. [13]. The details of the model will be published separately.
  19. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, Opt. Lett. 38, 796 (2013).
    [Crossref]
  20. Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
    [Crossref]
  21. K. Ravi, W. R. Huang, S. Carbajo, X.-J. Wu, and F. X. Kaertner, Opt. Express 22, 20239 (2014).
    [Crossref]
  22. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kaertner, Opt. Express 23, 5253 (2015).
    [Crossref]
  23. C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
    [Crossref]

2018 (3)

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

K. Murate, M. J. Roshtkhari, X. Ropagnol, and F. Blanchard, Opt. Lett. 43, 2090 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (1)

2014 (5)

2013 (2)

2012 (1)

Z. Ollmann, J. Hebling, and G. Almási, Appl. Phys. B 108, 821 (2012).
[Crossref]

2010 (1)

2008 (1)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).
[Crossref]

2002 (1)

1996 (1)

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[Crossref]

Almási, G.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, Opt. Express 25, 29560 (2017).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, Appl. Phys. B 108, 821 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Opt. Express 18, 12311 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).
[Crossref]

J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).
[Crossref]

Andriukaitis, G.

Arthur, G.

Balciunas, T.

Baltuska, A.

Blanchard, F.

Calendron, A.-L.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Cankaya, H.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Carbajo, S.

Cavalleri, A.

D. Nicoletti and A. Cavalleri, Adv. Opt. Photonics 8, 401 (2016).
[Crossref]

Elsaesser, T.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Fakhari, M.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Fallahi, A.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Flytzanis, C.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Fülöp, J. A.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, Opt. Express 25, 29560 (2017).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, Optica 3, 1075 (2016).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, Opt. Express 22, 20155 (2014).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, Phys. Rev. ST Accel. Beams. 17, 031301 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Opt. Express 18, 12311 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).
[Crossref]

J. A. Fülöp and J. Hebling, Recent Optical and Photonic Technologies, K. Y. Kim, ed. (InTech, 2010), Chap. 11.

Granados, E.

Hebling, J.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, Opt. Express 25, 29560 (2017).
[Crossref]

L. Pálfalvi, Z. Ollmann, L. Tokodi, and J. Hebling, Opt. Express 24, 8156 (2016).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, Optica 3, 1075 (2016).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, Opt. Express 22, 20155 (2014).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, Phys. Rev. ST Accel. Beams. 17, 031301 (2014).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, Appl. Phys. B 108, 821 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Opt. Express 18, 12311 (2010).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).
[Crossref]

J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).
[Crossref]

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[Crossref]

J. A. Fülöp and J. Hebling, Recent Optical and Photonic Technologies, K. Y. Kim, ed. (InTech, 2010), Chap. 11.

Hemmer, M.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Hong, K.-H.

Hua, Y.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Huang, S.-W.

Huang, W. R.

Ippen, E. P.

Kaertner, F. X.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kaertner, Opt. Express 23, 5253 (2015).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, X.-J. Wu, and F. X. Kaertner, Opt. Express 22, 20239 (2014).
[Crossref]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013).
[Crossref]

Karsch, S.

Kärtner, F. X.

Klingebiel, S.

Kozma, I. Z.

Krausz, F.

Kuhl, J.

Lombosi, C.

Márton, Z.

Maruyama, M.

Matlis, N. H.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Monoszlai, B.

Murate, K.

Nagashima, K.

Nanni, E. A.

Nelson, K. A.

Nicoletti, D.

D. Nicoletti and A. Cavalleri, Adv. Opt. Photonics 8, 401 (2016).
[Crossref]

Ochi, Y.

Ofori-Okai, B. K.

Ollmann, Z.

Pálfalvi, L.

Polónyi, G.

Pugzlys, A.

Ravi, K.

Reimann, K.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Ronny Huang, W.

Ropagnol, X.

Roshtkhari, M. J.

Schimpf, D. N.

Sharma, A.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

Sivarajah, P.

Skrobol, C.

Somma, C.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013).
[Crossref]

Tibai, Z.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

Tokodi, L.

Tóth, G.

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, Opt. Express 25, 29560 (2017).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, Phys. Rev. ST Accel. Beams. 17, 031301 (2014).
[Crossref]

Tsubouchi, M.

Turnár, S. Z.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

Unferdorben, M.

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

Woerner, M.

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Wu, X.-J.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, X.-J. Wu, and F. X. Kaertner, Opt. Express 22, 20239 (2014).
[Crossref]

Yoshida, F.

Zapata, L. E.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, Opt. Lett. 38, 796 (2013).
[Crossref]

Zhang, D.-F.

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Adv. Opt. Photonics (1)

D. Nicoletti and A. Cavalleri, Adv. Opt. Photonics 8, 401 (2016).
[Crossref]

Appl. Phys. B (1)

Z. Ollmann, J. Hebling, and G. Almási, Appl. Phys. B 108, 821 (2012).
[Crossref]

Appl. Phys. Lett. (1)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, Appl. Phys. Lett. 92, 171107 (2008).
[Crossref]

J. Phys. B (1)

Z. Tibai, M. Unferdorben, S. Z. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, J. Phys. B 51, 134004 (2018).
[Crossref]

Nat. Photonics (2)

T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013).
[Crossref]

D.-F. Zhang, A. Fallahi, M. Hemmer, X.-J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kaertner, Nat. Photonics 12, 336 (2018).
[Crossref]

Opt. Express (8)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[Crossref]

Phys. Rev. ST Accel. Beams. (1)

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, Phys. Rev. ST Accel. Beams. 17, 031301 (2014).
[Crossref]

Other (2)

J. A. Fülöp and J. Hebling, Recent Optical and Photonic Technologies, K. Y. Kim, ed. (InTech, 2010), Chap. 11.

According to numerical simulations using an improved version of the model described in Ref. [13]. The details of the model will be published separately.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Calculated THz pulse waveforms at different positions across the THz beam for a LN prism (a) and a plane-parallel LN slab (b). The lateral position in the input pump beam is labeled by r , whereby r = 0 corresponds to the beam center. L ( r ) is the corresponding material length along the THz propagation direction.
Fig. 2.
Fig. 2. (a) Scheme of the experimental setup. The pump pulse fronts are indicated at different positions in the setup. The angular dispersion of the pump is not shown. Inside the NLES, the pump pulse front is segmented. (b) Relative THz generation efficiency owing to a reduced interaction length in the light gray area in (a) as a function of the relative pump beam size.
Fig. 3.
Fig. 3. (a) Perspective view of the prototype echelon slab structure taken at 20 × magnification. (b) Reconstructed surface topology model of a single step of the echelon structure ( 700 × magnification). The images were recorded by a Hirox RH-2000 digital microscope by Emilien Leonhardt from Hirox Europe.
Fig. 4.
Fig. 4. Measured THz pulse energy and THz generation efficiency as functions of the pump energy and intensity.
Fig. 5.
Fig. 5. Measured (at two different pump pulse energies) and simulated THz pulse waveforms and their intensity spectra (inset).

Metrics