Abstract

Ultrastable high-power laser systems are essential components of the long baseline interferometers that detected the first gravitational waves from merging black holes and neutron stars. One way to further increase the sensitivity of current generation gravitational wave detectors (GWDs) is to increase the laser power injected into the interferometers. In this Letter, we describe and characterize a 72 W and a 114 W linearly polarized, single-frequency laser system at a wavelength of 1064 nm, each based on single-pass Nd:YVO4 power amplifiers. Both systems have low power and frequency noise and very high spatial purity with less than 10.7% and 2.9% higher order mode content, respectively. We demonstrate the simple integration of these amplifiers into the laser stabilization environment of operating GWDs and show stable low-noise operation of one of the amplifier systems in such an environment for more than 45 days.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stabilized high-power laser system for the gravitational wave detector advanced LIGO

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke
Opt. Express 20(10) 10617-10634 (2012)

Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers

Henrik Tünnermann, Jan Hendrik Pöld, Jörg Neumann, Dietmar Kracht, Benno Willke, and Peter Weßels
Opt. Express 19(20) 19600-19606 (2011)

Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers

Patrick Kwee and Benno Willke
Appl. Opt. 47(32) 6022-6032 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
    [Crossref]
  2. F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
    [Crossref]
  3. B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  4. B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
    [Crossref]
  5. B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
    [Crossref]
  6. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, Opt. Express 20, 10617 (2012).
    [Crossref]
  7. P. Kwee and B. Willke, Appl. Opt. 47, 6022 (2008).
    [Crossref]
  8. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
    [Crossref]
  9. M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, Opt. Express 15, 459 (2007).
    [Crossref]
  10. M. Tröbs, P. Weßels, and C. Fallnich, Opt. Express 13, 2224 (2005).
    [Crossref]
  11. R. S. Abbott and P. J. King, Rev. Sci. Instrum. 72, 1346 (2001).
    [Crossref]
  12. H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
    [Crossref]

2017 (2)

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
[Crossref]

2016 (1)

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

2015 (1)

J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

2014 (1)

F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
[Crossref]

2012 (1)

2011 (2)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

2001 (1)

R. S. Abbott and P. J. King, Rev. Sci. Instrum. 72, 1346 (2001).
[Crossref]

Aasi, J.

J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

Abbott, B. P.

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

Abbott, R.

J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

Abbott, R. S.

R. S. Abbott and P. J. King, Rev. Sci. Instrum. 72, 1346 (2001).
[Crossref]

Abbott, T.

J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

Acernese, F.

F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
[Crossref]

Amico, P.

F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
[Crossref]

Arnaud, N.

F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
[Crossref]

Babusci, D.

F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
[Crossref]

Bogan, C.

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, Opt. Express 20, 10617 (2012).
[Crossref]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Danzmann, K.

Fallnich, C.

Frede, M.

Jawahar, S.

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

Kim, H.

King, P.

King, P. J.

R. S. Abbott and P. J. King, Rev. Sci. Instrum. 72, 1346 (2001).
[Crossref]

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Kracht, D.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
[Crossref]

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, Opt. Express 15, 459 (2007).
[Crossref]

Kwee, P.

Lockerbie, N. A.

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

Neumann, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, Opt. Express 19, 19600 (2011).
[Crossref]

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Pöld, J.

Pöld, J. H.

Puncken, O.

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, Opt. Express 20, 10617 (2012).
[Crossref]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Savage, R. L.

Schulz, B.

Seifert, F.

Tokmakov, K. V.

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

Tröbs, M.

Tünnermann, H.

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Wessels, P.

Weßels, P.

Wessels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Weßels, P.

Wilhelm, R.

Willke, B.

Winkelmann, L.

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, Opt. Express 20, 10617 (2012).
[Crossref]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, Appl. Phys. B 102, 529 (2011).
[Crossref]

Astrophys. J. (1)

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Astrophys. J. 848, L12 (2017).
[Crossref]

Classical Quantum Gravity (1)

J. Aasi, B. P. Abbott, R. Abbott, and T. Abbott, and LIGO Scientific Collaboration, Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

Opt. Express (4)

Phys. Rev. Lett. (2)

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

B. P. Abbott, S. Jawahar, N. A. Lockerbie, and K. V. Tokmakov, LIGO Scientific Collaboration, and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

R. S. Abbott and P. J. King, Rev. Sci. Instrum. 72, 1346 (2001).
[Crossref]

Virgo Collaboration, Classical Quantum Gravity (1)

F. Acernese, P. Amico, N. Arnaud, and D. Babusci, and Virgo Collaboration, Classical Quantum Gravity 32, 024001 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic setup of the light power amplifier system with our aLIGO MOPA laser as the seed source. A fraction of the light from the aLIGO MOPA laser and from the neoVAN amplifier is used for characterization with the diagnostic breadboard (DBB).
Fig. 2.
Fig. 2. Output power of the neoVAN-4S-HP amplifier and the power transmitted by a premode cleaner (PMC) filter cavity are shown as a function of the seed power. The difference between the power after and before the amplifier (extracted power) is nearly constant for seed powers above 5 W.
Fig. 3.
Fig. 3. Amplitude spectral density of the relative power noise of the 72 W and 114 W laser beams (solid lines) and the corresponding seed laser beams (dotted lines).
Fig. 4.
Fig. 4. Amplitude spectral density of the relative power noise of the 114 W laser beam (solid line) and of the corresponding seed laser beam (dotted line) for Fourier frequencies up to 100 MHz. Beyond 20 MHz, the measured noise is close to the shot noise of the detected photocurrent. The peak at 35 MHz corresponds to modulation sidebands used for the feedback control loops.
Fig. 5.
Fig. 5. Using the diagnostic breadboard, measurements of the frequency noise were performed and are shown as an amplitude spectral density over the Fourier frequency. The frequency noises of the free-running amplifiers (solid lines) are mostly dominated by the frequency noises of the seed laser (dotted lines) and close to the typical frequency noise of NPRO lasers.
Fig. 6.
Fig. 6. Pointing noise in all four alignments degrees of freedom is shown as an amplitude spectral density over the Fourier frequency. The pointing noise of the amplifiers (solid lines) is dominated by the low pointing noise of the seed laser (dotted lines).
Fig. 7.
Fig. 7. Long-term measurement of the output power of the amplifier and in transmission of the premode cleaner cavity (PMC) shows the stability of the system over time. The PMC transmission shows dips due to automatic relocking of the laser system. Between days 34 and 37, the laser system was switched off and on again and recovered operation at the same performance as before without any realignment of the amplifier.
Fig. 8.
Fig. 8. Two separated photodiodes of the same kind were used to perform a measurement of the relative power noise. This is shown as an amplitude spectral density over the Fourier frequency. One photodiode is used as an out-of-loop detector, while the other one is used for the active feedback stabilization. The power stabilization of the system was performed with two different power actuators (see text).

Metrics