Abstract

We demonstrate thermal classification of sequentially written fiber Bragg gratings. This Letter presents a process to determine the type of fiber Bragg grating written in SMF28 and GF4A by introducing the gratings to thermal treatment. This technique can be applied to several approaches based on sequential writing, including the small spot direct ultraviolet writing technique. Four different types of gratings have been identified, which are dependent on the fiber type and fluence used during the writing process.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Observations from direct UV-written, non-hydrogen-loaded, thermally regenerated Bragg gratings in double-clad photosensitive fiber

Alexander Jantzen, Rex H. S. Bannerman, Sam A. Berry, James C. Gates, Paul C. Gow, Lewis J. Boyd, Peter G. R. Smith, and Christopher Holmes
Opt. Lett. 42(19) 3741-3744 (2017)

Thermal regeneration of fiber Bragg gratings in photosensitive fibers

Eric Lindner, Christoph Chojetzki, Sven Brückner, Martin Becker, Manfred Rothhardt, and Hartmut Bartelt
Opt. Express 17(15) 12523-12531 (2009)

Fast thermal regeneration of fiber Bragg gratings

Antonio Bueno, Damien Kinet, Patrice Mégret, and Christophe Caucheteur
Opt. Lett. 38(20) 4178-4181 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, Sensors 12, 1898 (2012).
    [Crossref]
  2. J. Canning, Measurement 79, 236 (2016).
    [Crossref]
  3. R. Di Sante, Sensors 15, 18666 (2015).
    [Crossref]
  4. A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
    [Crossref]
  5. X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
    [Crossref]
  6. H. Xia, D. Byrd, S. Dekate, and B. Lee, J. Sensors 2013, 1 (2013).
    [Crossref]
  7. J. Canning, Laser Photonics Rev. 2, 275 (2008).
    [Crossref]
  8. D. P. Hand and P. St.J. Russell, Opt. Lett. 15, 102 (1990).
    [Crossref]
  9. A. I. Gusarov and D. B. Doyle, Opt. Lett. 25, 872 (2000).
    [Crossref]
  10. X. Shu, D. Zhao, L. Zhang, and I. Bennion, Appl. Opt. 43, 2006 (2004).
    [Crossref]
  11. X. Shu, Y. Lui, D. Zhao, B. Gwandu, F. Florani, L. Zhang, and I. Bennion, Opt. Lett. 27, 701 (2002).
    [Crossref]
  12. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, Opt. Express 21, 15747 (2013).
    [Crossref]
  13. M. Gagné, L. Bojor, R. Maciejko, and R. Kashyap, Opt. Express 16, 21550 (2008).
    [Crossref]
  14. M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, Opt. Express 22, 387 (2014).
    [Crossref]
  15. A. Jantzen, R. H. S. Bannerman, S. A. Berry, J. C. Gates, P. C. Gow, L. J. Boyd, P. G. R. Smith, and C. Holmes, Opt. Lett. 42, 3741 (2017).
    [Crossref]

2017 (1)

2016 (1)

J. Canning, Measurement 79, 236 (2016).
[Crossref]

2015 (1)

R. Di Sante, Sensors 15, 18666 (2015).
[Crossref]

2014 (2)

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, Opt. Express 22, 387 (2014).
[Crossref]

2013 (2)

2012 (2)

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

S. J. Mihailov, Sensors 12, 1898 (2012).
[Crossref]

2008 (2)

2004 (1)

2002 (1)

2000 (1)

1990 (1)

Bannerman, R. H. S.

Bennion, I.

Berry, S. A.

Bojor, L.

Boyd, L. J.

Byrd, D.

H. Xia, D. Byrd, S. Dekate, and B. Lee, J. Sensors 2013, 1 (2013).
[Crossref]

Canning, J.

J. Canning, Measurement 79, 236 (2016).
[Crossref]

J. Canning, Laser Photonics Rev. 2, 275 (2008).
[Crossref]

Dekate, S.

H. Xia, D. Byrd, S. Dekate, and B. Lee, J. Sensors 2013, 1 (2013).
[Crossref]

Di Sante, R.

R. Di Sante, Sensors 15, 18666 (2015).
[Crossref]

Doyle, D. B.

Florani, F.

Gagné, M.

Gates, J. C.

Gow, P. C.

Gusarov, A. I.

Gwandu, B.

Hand, D. P.

Harrison, A.

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Holmes, C.

Jantzen, A.

John, P.

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Kashyap, R.

Lapointe, J.

Lebedeva, V. N.

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

Lee, B.

H. Xia, D. Byrd, S. Dekate, and B. Lee, J. Sensors 2013, 1 (2013).
[Crossref]

Loranger, S.

Lui, Y.

Maciejko, R.

Mackley, T.

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Mennea, P. L.

Mihailov, S. J.

S. J. Mihailov, Sensors 12, 1898 (2012).
[Crossref]

Mozalev, V. V.

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

Nosko, A. L.

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

Nosko, A. P.

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

Rogers, H. L.

Russell, P. St.J.

Shehab, E.

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Shu, X.

Sima, C.

Smith, P. G. R.

Suvorov, A. V.

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

Sydor, P.

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Tomas Centrich, X.

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Xia, H.

H. Xia, D. Byrd, S. Dekate, and B. Lee, J. Sensors 2013, 1 (2013).
[Crossref]

Zervas, M. N.

Zhang, L.

Zhao, D.

Appl. Opt. (1)

J. Frict. Wear (1)

A. L. Nosko, V. V. Mozalev, A. P. Nosko, A. V. Suvorov, and V. N. Lebedeva, J. Frict. Wear 33, 233 (2012).
[Crossref]

J. Sensors (1)

H. Xia, D. Byrd, S. Dekate, and B. Lee, J. Sensors 2013, 1 (2013).
[Crossref]

Laser Photonics Rev. (1)

J. Canning, Laser Photonics Rev. 2, 275 (2008).
[Crossref]

Measurement (1)

J. Canning, Measurement 79, 236 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Procedia CIRP (1)

X. Tomas Centrich, E. Shehab, P. Sydor, T. Mackley, P. John, and A. Harrison, Procedia CIRP 22, 287 (2014).
[Crossref]

Sensors (2)

R. Di Sante, Sensors 15, 18666 (2015).
[Crossref]

S. J. Mihailov, Sensors 12, 1898 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Set up of the SSDUW system: the 244 nm laser beam is divided up into two arms that are recombined in the fiber core, creating an interference pattern.
Fig. 2.
Fig. 2. Bragg reflection versus the wavelength for a grating written with 10    kJ / cm 2 in the photosensitive GF4A and with 7    kJ / cm 2 in hydrogen-loaded SMF28 collected at room temperature.
Fig. 3.
Fig. 3. Bragg reflection versus fluence for GF4A and hydrogen-loaded SMF28 measured at room temperature. Notice that the GF4A has a minimum around 20    kJ / cm 2 , indicating the characteristic roll-over from Type I to Type In.
Fig. 4.
Fig. 4. Bragg reflection versus temperature for three distinct fluences in GF4A. The 40    kJ / cm 2 grating shows little thermal change up to 650°C. The low fluence grating starts to show a decrease in reflection at 250°C. A superposition of the two grating types causes the 20    kJ / cm 2 grating to gain reflection strength at 400°C, indicating the annealing of the Type I component. All gratings show thermal regeneration.
Fig. 5.
Fig. 5. Bragg reflection versus temperature for two distinct fluences in SMF28. The low fluence grating shows decreasing reflection at 100°C, whereas the high fluence grating demonstrates thermal stability up to 400°C.

Metrics