Abstract

The on-chip quantum dot (QD) microcavity laser engineered on an annular groove made of fused silica was demonstrated based on the external quasi-cavity configuration. By incorporating an appropriate dose of polymer into QD film, the spectral purity of the lasing spectrum was significantly enhanced. In contrast to the dye microcavity laser embedded on the same trench profile, a QD laser possesses a lifetime that is over 10 times longer. We have introduced a unique two-step quantum gain deposition process that has remarkably reduced the wavelength drifts of laser emissions in an aqueous environment by approximately 400%. The reconfigurable cavity platform in combination with an appropriately engineered quantum gain medium embedded onto it promises to enable photostable chip-scale coherent light sources for various photonic, chemical, and biochemical sensing applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micropillar lasers with site-controlled quantum dots as active medium

Arsenty Kaganskiy, Sören Kreinberg, Xavier Porte, and Stephan Reitzenstein
Optica 6(4) 404-409 (2019)

Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength

Tian Yang, Adam Mock, John D. O’Brien, Samuel Lipson, and Dennis G. Deppe
Opt. Express 15(12) 7281-7289 (2007)

1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon

Qiang Li, Yating Wan, Alan Y. Liu, Arthur C. Gossard, John E. Bowers, Evelyn L. Hu, and Kei May Lau
Opt. Express 24(18) 21038-21045 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription