Abstract

Chaotic optical communications were originally proposed to provide high-level physical layer security for optical communications. Limited by the difficulty of chaos synchronization, there has been little experimental demonstration of high-speed chaotic optical communications, and point to multipoint chaotic optical networking is hard to implement. Here, we propose a method to overcome the current limitations. By using a deep-learning-based scheme to learn the complex nonlinear model of the chaotic transmitter, wideband chaos synchronization can be realized in the digital domain. Therefore, the chaotic receiver can be significantly simplified while still guaranteeing security. A successful transmission of 32 Gb/s messages hidden in a wideband chaotic optical carrier was experimentally demonstrated over a 20 km fiber link. We believe the proposed deep-learning-based chaos synchronization method will enable a new direction for further development of high-speed chaotic optical communication systems and networks.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate

Junxiang Ke, Lilin Yi, Guangqiong Xia, and Weisheng Hu
Opt. Lett. 43(6) 1323-1326 (2018)

Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback

Ning Jiang, Anke Zhao, Shiqin Liu, Chenpeng Xue, and Kun Qiu
Opt. Express 26(25) 32404-32416 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription