Abstract

Diffraction and scatter effects are two big challenges that make the magnetization induced by a light beam endure a finite propagation distance and vulnerable to the defect of magneto-optic film. Here we propose a method to overcome both challenges by creating an ultralong non-diffracting (UND) magnetization light beam with multiple energy oscillations. By simply increasing the number of energy oscillations using the optical pen, the magnetization light beam can propagate over an ultralong distance without significant divergence. Besides, as a kind of non-diffracting light beam, this magnetization light beam possesses the property of self-healing, which makes it robust to the scatter effect. This Letter demonstrates for the first time, to the best of our knowledge, the creation of an UND magnetization beam, which may open a new avenue for high-density all-optical magnetic recording and atomic trapping, as well as confocal and magnetic resonance microscopy.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites

Yu Gu and Konstantin G. Kornev
J. Opt. Soc. Am. B 27(11) 2165-2173 (2010)

Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light

Huapeng Ye, Chao Wan, Kun Huang, Tiancheng Han, Jinghua Teng, Yeo Swee Ping, and Cheng-Wei Qiu
Opt. Lett. 39(3) 630-633 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription