Abstract

We recently presented a novel laser-based infrared (IR) spectroscopic phase–amplitude polarimeter for sub-decisecond and sub-mm2 measurements of organic thin films [Opt. Lett. 44, 4387 (2019) [CrossRef]  ]. Here we report on the hyperspectral-imaging capabilities of this device. The single-shot polarimeter employs a broadly tunable mid-IR (13181765cm1) quantum cascade laser (QCL) and a four-channel beam-division design for simultaneous phase and amplitude measurements. Fast QCL tuning speeds of up to 1500cm1/s enable hyperspectral mapping of large sample areas (50×50mm2) within several tens of minutes, achieving 120 μm spatial and <0.5cm1 spectral resolution. We apply the instrument for imaging both the heterogeneous chemical and structural properties of sub-100 nm thin polymer and fatty-acid films. Our polarimeter opens up new applications regarding laterally resolved IR analyses of complex thin films.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-second infrared broadband-laser single-shot phase–amplitude polarimetry of thin films

Andreas Furchner, Christoph Kratz, and Karsten Hinrichs
Opt. Lett. 44(17) 4387-4390 (2019)

Single-shot noninvasive three-dimensional imaging through scattering media

Ryoichi Horisaki, Yuka Okamoto, and Jun Tanida
Opt. Lett. 44(16) 4032-4035 (2019)

Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry

Junpeng Guo and David Brady
Appl. Opt. 39(10) 1486-1492 (2000)

References

  • View by:
  • |
  • |
  • |

  1. P. Larkin, Infrared and Raman Spectroscopy (Elsevier, 2011).
  2. M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale (Springer, 2013).
  3. K. Hinrichs and K.-J. Eichhorn, Ellipsometry of Functional Organic Surfaces and Films (Springer, 2018).
  4. A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
    [Crossref]
  5. A. Furchner, C. Kratz, and K. Hinrichs, Opt. Lett. 44, 4387 (2019).
    [Crossref]
  6. M. R. Islam, A. Ahiabu, and M. J. Serpe, Sensors 14, 8984 (2014).
    [Crossref]
  7. B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).
    [Crossref]
  8. J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
    [Crossref]
  9. K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).
    [Crossref]
  10. A. Röseler and E.-H. Korte, in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2006).
  11. Y. Maeda, T. Higuchi, and I. Ikeda, Langmuir 16, 7503 (2000).
    [Crossref]
  12. A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
    [Crossref]

2019 (2)

A. Furchner, C. Kratz, and K. Hinrichs, Opt. Lett. 44, 4387 (2019).
[Crossref]

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

2017 (2)

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

2014 (2)

K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).
[Crossref]

M. R. Islam, A. Ahiabu, and M. J. Serpe, Sensors 14, 8984 (2014).
[Crossref]

2004 (1)

B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).
[Crossref]

2000 (1)

Y. Maeda, T. Higuchi, and I. Ikeda, Langmuir 16, 7503 (2000).
[Crossref]

Ahiabu, A.

M. R. Islam, A. Ahiabu, and M. J. Serpe, Sensors 14, 8984 (2014).
[Crossref]

Akkache, S.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Araújo, A. C.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Badens, E.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Bryant, S. J.

B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).
[Crossref]

Duarte, A. R. C.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Eichhorn, K.-J.

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

K. Hinrichs and K.-J. Eichhorn, Ellipsometry of Functional Organic Surfaces and Films (Springer, 2018).

Furchner, A.

A. Furchner, C. Kratz, and K. Hinrichs, Opt. Lett. 44, 4387 (2019).
[Crossref]

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

Gkogkou, D.

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

Higuchi, T.

Y. Maeda, T. Higuchi, and I. Ikeda, Langmuir 16, 7503 (2000).
[Crossref]

Hingerl, K.

M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale (Springer, 2013).

Hinrichs, K.

A. Furchner, C. Kratz, and K. Hinrichs, Opt. Lett. 44, 4387 (2019).
[Crossref]

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

K. Hinrichs and K.-J. Eichhorn, Ellipsometry of Functional Organic Surfaces and Films (Springer, 2018).

Ikeda, I.

Y. Maeda, T. Higuchi, and I. Ikeda, Langmuir 16, 7503 (2000).
[Crossref]

Islam, M. R.

M. R. Islam, A. Ahiabu, and M. J. Serpe, Sensors 14, 8984 (2014).
[Crossref]

Ketelsen, H.

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

Korte, E.-H.

A. Röseler and E.-H. Korte, in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2006).

Kratz, C.

A. Furchner, C. Kratz, and K. Hinrichs, Opt. Lett. 44, 4387 (2019).
[Crossref]

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

Kroning, A.

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

Larkin, P.

P. Larkin, Infrared and Raman Spectroscopy (Elsevier, 2011).

Losurdo, M.

M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale (Springer, 2013).

Maeda, Y.

Y. Maeda, T. Higuchi, and I. Ikeda, Langmuir 16, 7503 (2000).
[Crossref]

Masmoudi, Y.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Pielichowska, K.

K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).
[Crossref]

Pielichowski, K.

K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).
[Crossref]

Ratner, B. D.

B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).
[Crossref]

Rauch, S.

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

Reis, R. L.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Röseler, A.

A. Röseler and E.-H. Korte, in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2006).

Serpe, M. J.

M. R. Islam, A. Ahiabu, and M. J. Serpe, Sensors 14, 8984 (2014).
[Crossref]

Silva, J. M.

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Uhlmann, P.

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

Anal. Chem. (1)

A. Furchner, A. Kroning, S. Rauch, P. Uhlmann, K.-J. Eichhorn, and K. Hinrichs, Anal. Chem. 89, 3240 (2017).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).
[Crossref]

Appl. Surf. Sci. (1)

A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, and K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017).
[Crossref]

Langmuir (1)

Y. Maeda, T. Higuchi, and I. Ikeda, Langmuir 16, 7503 (2000).
[Crossref]

Mater. Sci. Eng. C (1)

J. M. Silva, S. Akkache, A. C. Araújo, Y. Masmoudi, R. L. Reis, E. Badens, and A. R. C. Duarte, Mater. Sci. Eng. C 99, 599 (2019).
[Crossref]

Opt. Lett. (1)

Prog. Mater. Sci. (1)

K. Pielichowska and K. Pielichowski, Prog. Mater. Sci. 65, 67 (2014).
[Crossref]

Sensors (1)

M. R. Islam, A. Ahiabu, and M. J. Serpe, Sensors 14, 8984 (2014).
[Crossref]

Other (4)

P. Larkin, Infrared and Raman Spectroscopy (Elsevier, 2011).

M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale (Springer, 2013).

K. Hinrichs and K.-J. Eichhorn, Ellipsometry of Functional Organic Surfaces and Films (Springer, 2018).

A. Röseler and E.-H. Korte, in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic of the single-shot IR imaging polarimeter.
Fig. 2.
Fig. 2. Hyperspectral data of a structured PNIPAAm thin film on Au. (a) Polarimetric phase and amplitude maps at different wavelengths. (b) Amide I band amplitude map. (c)  tan Ψ linescan with selected ellipsometric spectra of the homogeneous layer.
Fig. 3.
Fig. 3. Hyperspectral data of a structured, partially chemically modified MyA thin film on Au. (a) Polarimetric phase and amplitude maps at different wavelengths, characteristic for topography, pure and complexed MyA. (b) Chemical-contrast map showing the predominant areas of pure and complexed MyA. (c)  tan Ψ linescan with selected ellipsometric spectra and marker bands.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϱ = tan Ψ · e i Δ = r p / r s
cos 2 Ψ = I 90 ° I 0 ° I 90 ° + I 0 ° , sin 2 Ψ cos Δ = I 45 ° I 135 ° I 45 ° + I 135 ° .