Abstract

In this Letter, for the first time, to the best of our knowledge, we propose a digital holographic reconstruction method with a one-to-two deep learning framework (Y-Net). Perfectly fitting the holographic reconstruction process, the Y-Net can simultaneously reconstruct intensity and phase information from a single digital hologram. As a result, this compact network with reduced parameters brings higher performance than typical network variants. The experimental results of the mouse phagocytes demonstrate the advantages of the proposed Y-Net.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction

Kaiqiang Wang, Qian Kemao, Jianglei Di, and Jianlin Zhao
Opt. Lett. 45(15) 4220-4223 (2020)

Dynamic-range compression scheme for digital hologram using a deep neural network

Tomoyoshi Shimobaba, David Blinder, Michal Makowski, Peter Schelkens, Yota Yamamoto, Ikuo Hoshi, Takashi Nishitsuji, Yutaka Endo, Takashi Kakue, and Tomoyoshi Ito
Opt. Lett. 44(12) 3038-3041 (2019)

Digital holographic particle volume reconstruction using a deep neural network

Tomoyoshi Shimobaba, Takayuki Takahashi, Yota Yamamoto, Yutaka Endo, Atsushi Shiraki, Takashi Nishitsuji, Naoto Hoshikawa, Takashi Kakue, and Tomoyosh Ito
Appl. Opt. 58(8) 1900-1906 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription