Abstract

In this Letter, a d’Alembert–Schrödinger hybrid method is proposed to analyze the transient interaction between the incident electromagnetic control pulse and the electron. This hybrid method is based on the d’Alembert equation, which describes the propagation of the electromagnetic field and the time-dependent Schrödinger equation, which describes the action of the electron. Moreover, the finite-difference time-domain method is used to solve those equations. In our simulation, using the presented hybrid equations and the control equation of the quantum state, a scheme is presented to design laser pulses to control discrete quantum states in a three-dimensional artificial atom model. Excitingly, the laser pulses have been successfully designed for the perfect four quantum states’ transition for the first time. With that, the spatiotemporal distribution for the probability density of an electron wave packet is showed in detail to describe the laser-induced transition process of quantum states.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional computer model for simulating realistic solid-state lasers

Hong Shu and Michael Bass
Appl. Opt. 46(23) 5687-5697 (2007)

Manipulating dynamical Rabi-splitting with two-color laser pulses

H. Agueny, A. Taoutioui, Y. Adnani, and A. Makhoute
Opt. Express 27(15) 21020-21028 (2019)

Tunneling phase time in photoionization: in search of a clock

E. E. Serebryannikov and A. M. Zheltikov
Optica 3(11) 1201-1204 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription