Abstract

In this work, we investigated the use of optoelectronic tweezers (OET) to manipulate objects that are larger than those commonly positioned with standard optical tweezers. We studied the forces that could be produced on differently sized polystyrene microbeads and MCF-7 breast cancer cells with light-induced dielectrophoresis (DEP). It was found that the DEP force imposed on the bead/cell did not increase linearly with the volume of the bead/cell, primarily because of the non-uniform distribution of the electric field above the OET bottom plate. Although this size-scaling work focuses on microparticles and cells, we propose that the physical mechanism elucidated in this research will be insightful for other micro-objects, biological samples, and micro-actuators undergoing OET manipulation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Escape from an Optoelectronic Tweezer Trap: experimental results and simulations

Shuailong Zhang, Adele Nikitina, Yujie Chen, Yanfeng Zhang, Lin Liu, Andrew G. Flood, Joan Juvert, M. Dean Chamberlain, Nazir P. Kherani, Steven L. Neale, and Aaron R. Wheeler
Opt. Express 26(5) 5300-5309 (2018)

Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells

Abigail H. Jeorrett, Steven L. Neale, David Massoubre, Erdan Gu, Robert K. Henderson, Owain Millington, Keith Mathieson, and Martin D. Dawson
Opt. Express 22(2) 1372-1380 (2014)

Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays

Alicja Zarowna-Dabrowska, Steven L. Neale, David Massoubre, Jonathan McKendry, Bruce R. Rae, Robert K. Henderson, Mervyn J. Rose, Huabing Yin, Jonathan M. Cooper, Erdan Gu, and Martin D. Dawson
Opt. Express 19(3) 2720-2728 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
    [Crossref]
  2. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
    [Crossref]
  3. H. Hwang and J. K. Park, Lab Chip 11, 33 (2011).
    [Crossref]
  4. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Laser Photon. Rev. 7, 839 (2013).
    [Crossref]
  5. A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
    [Crossref]
  6. S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, Opt. Lett. 35, 1959 (2010).
    [Crossref]
  7. I. Elvira, J. Muñoz-Martínez, Á. Barroso, C. Denz, J. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, Opt. Lett. 43, 30 (2018).
    [Crossref]
  8. S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
    [Crossref]
  9. J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
    [Crossref]
  10. J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, Opt. Express 24, 18163 (2016).
    [Crossref]
  11. S. Zhang, J. Juvert, J. Cooper, and S. L. Neale, Sci. Rep. 6, 32840 (2016).
    [Crossref]
  12. R. Pethig, Biomicrofluidics 4, 022811 (2010).
    [Crossref]
  13. S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
    [Crossref]
  14. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, Opt. Express 15, 12619 (2007).
    [Crossref]
  15. D. Palima and J. Glückstad, Laser Photon. Rev. 7, 478 (2013).
    [Crossref]
  16. S. Mohanty, Lab Chip 12, 3624 (2012).
    [Crossref]

2018 (3)

2016 (2)

2014 (1)

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

2013 (2)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Laser Photon. Rev. 7, 839 (2013).
[Crossref]

D. Palima and J. Glückstad, Laser Photon. Rev. 7, 478 (2013).
[Crossref]

2012 (1)

S. Mohanty, Lab Chip 12, 3624 (2012).
[Crossref]

2011 (1)

H. Hwang and J. K. Park, Lab Chip 11, 33 (2011).
[Crossref]

2010 (2)

2009 (1)

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

2008 (1)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

2007 (1)

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[Crossref]

Agulló-López, F.

I. Elvira, J. Muñoz-Martínez, Á. Barroso, C. Denz, J. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, Opt. Lett. 43, 30 (2018).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Laser Photon. Rev. 7, 839 (2013).
[Crossref]

Barroso, Á.

Carrascosa, M.

I. Elvira, J. Muñoz-Martínez, Á. Barroso, C. Denz, J. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, Opt. Lett. 43, 30 (2018).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

Chamberlain, M. D.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

Chen, Y.

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Chiou, P. Y.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[Crossref]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

Cooper, J.

S. Zhang, J. Juvert, J. Cooper, and S. L. Neale, Sci. Rep. 6, 32840 (2016).
[Crossref]

Denz, C.

Dholakia, K.

Eddie, I.

Elvira, I.

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Laser Photon. Rev. 7, 839 (2013).
[Crossref]

Flood, A. G.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

García-Cabañes, A.

I. Elvira, J. Muñoz-Martínez, Á. Barroso, C. Denz, J. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, Opt. Lett. 43, 30 (2018).
[Crossref]

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

Glückstad, J.

D. Palima and J. Glückstad, Laser Photon. Rev. 7, 478 (2013).
[Crossref]

Hsu, H. Y.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

Hsu, L.

Huang, H. P.

Hwang, H.

H. Hwang and J. K. Park, Lab Chip 11, 33 (2011).
[Crossref]

Jamshidi, A.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

Juvert, J.

Kelly, A.

Kherani, N. P.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

Krauss, T. F.

Ku, M. Y.

Liu, C. H.

Liu, L.

Matarrubia, J.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

Mazilu, M.

Mitchell, C. J.

Mohanty, S.

S. Mohanty, Lab Chip 12, 3624 (2012).
[Crossref]

Muñoz-Martínez, J.

Neale, S. L.

Nikitina, A.

Ohta, A. T.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[Crossref]

Palima, D.

D. Palima and J. Glückstad, Laser Photon. Rev. 7, 478 (2013).
[Crossref]

Park, J. K.

H. Hwang and J. K. Park, Lab Chip 11, 33 (2011).
[Crossref]

Pauzauskie, P. J.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

Pethig, R.

R. Pethig, Biomicrofluidics 4, 022811 (2010).
[Crossref]

Plaza, J. L.

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

Ramiro, J.

Reed, G. T.

Satkauskas, M.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Schuck, P. J.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

Shakiba, N.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Singh, J.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Tian, P.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Valley, J. K.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

Wheeler, A. R.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

Wilkinson, J. S.

Wilson, J. I. B.

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Laser Photon. Rev. 7, 839 (2013).
[Crossref]

Wu, M. C.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[Crossref]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

Yang, S. M.

Yu, K.

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

Yu, S.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Yu, T. M.

Zandstra, P. W.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Zhang, S.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

S. Zhang, J. Juvert, J. Cooper, and S. L. Neale, Sci. Rep. 6, 32840 (2016).
[Crossref]

J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, Opt. Express 24, 18163 (2016).
[Crossref]

Zhang, Y.

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, and A. R. Wheeler, Opt. Express 26, 5300 (2018).
[Crossref]

Biomicrofluidics (1)

R. Pethig, Biomicrofluidics 4, 022811 (2010).
[Crossref]

J. Phys. D (1)

J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, J. Phys. D 47, 265101 (2014).
[Crossref]

Lab Chip (2)

H. Hwang and J. K. Park, Lab Chip 11, 33 (2011).
[Crossref]

S. Mohanty, Lab Chip 12, 3624 (2012).
[Crossref]

Laser Photon. Rev. (2)

D. Palima and J. Glückstad, Laser Photon. Rev. 7, 478 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, Laser Photon. Rev. 7, 839 (2013).
[Crossref]

Nano Lett. (1)

A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, Nano Lett. 9, 2921 (2009).
[Crossref]

Nat. Photonics (1)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, Nat. Photonics 2, 86 (2008).
[Crossref]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Sci. Rep. (1)

S. Zhang, J. Juvert, J. Cooper, and S. L. Neale, Sci. Rep. 6, 32840 (2016).
[Crossref]

Small (1)

S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, and A. R. Wheeler, Small 14, 1803342 (2018).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       Multiple 15-µm-diameter beads are manipulated by a “Roulette”?-shaped light pattern to rotate at an angular velocity of 1.26 rad/s. The OET device was driven at an AC bias of 20 Vp-p at 30 kHz. The video is in real time.
» Visualization 2       A 15-µm-diameter polystyrene bead is moved at a linear velocity of 500 µm/s by a “doughnut”?-shaped light pattern (clip 1). A MCF-7 cell is moved at a linear velocity of 20 µm/s by a “doughnut”?-shaped light pattern (clip 2).
» Visualization 3       A micro-rotor is rotated at an angular velocity of 3.14 rad/s (clip 1) and 1.26 rad/s (clip 2). The OET device was driven at an AC bias of 20 Vp-p at 15 kHz. The video is in real time.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) 3D schematic of an OET device. (b) Video frame showing the use of a “Roulette”-shaped light pattern to rotate 15 μm-diameter polystyrene beads. See Visualization 1. (c) Video frame showing the use of a “doughnut”-shaped light pattern to move a single 15 μm-diameter polystyrene bead at a linear velocity of 500 μm/s. The red arrow represents the moving direction. See Visualization 2.
Fig. 2.
Fig. 2. (a) Maximum velocity versus square of polystyrene bead radius. (b) Measured and simulated DEP force versus polystyrene bead volume. The inset is a magnified view of the main-panel data in the dashed square. (c) Maximum velocity versus square of MCF-7 cell radius. The inset figure is a microscope image of a trapped cell moving at 20 μm/s. The red arrow represents the moving direction (see Visualization 2). (d) Measured DEP force versus MCF-7 cell volume. Error bars represent standard deviation for five replicates (for beads, each replicate was generated from a different bead; for cells, the replicates were repeated trials with the same cell).
Fig. 3.
Fig. 3. (a) 3D simulation model and plots of (b) simulated electric potential, (c) simulated electric field, and (d) simulated E2 for an OET trap formed by illuminating a light pattern [shaded in brown in panel (a)] on the photoconductive layer of an OET device. The zx cut plane in (a) forms the basis for the plots in (b)–(d), in which the simulated electric potential, electric field, and E2 are plotted in heat maps (blue = low, red—high). In (b)–(d), the bead (15 μm diameter) is illustrated as an open black circle. The inset in (d) is a magnified view of the main-panel data in the dashed square. (e) Simulated E2 as a function of the height of the cut line. The cut line is shown in the inset of (d), starting from the bottom of the bead to its top.
Fig. 4.
Fig. 4. (a) Measured (black squares) and simulated (red circles) E2 for polystyrene beads as a function of radius. (b) Microscope image of a micro-rotor in OET system. See Visualization 3 for a micro-rotor rotating at 3.14 rad/s and 1.26 rad/s. (c) Scanning electron microscope image of a micro-rotor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FDEP=Fdrag=6πηrν,
FDEP=2πr3εmRe[K(ω)]E2,

Metrics