Abstract

In biological tissue, longer near-infrared wavelengths generally experience less scattering and more water absorption. Here we demonstrate an optical coherence tomography (OCT) system centered at 2.1 microns, whose bandwidth falls in the 2.2 micron water absorption optical window, for in vivo imaging of the rodent brain. We show in vivo that at 2.1 microns, the OCT signal is actually attenuated less in cranial bone than at 1.3 microns, and is also less susceptible to multiple scattering tails. We also show that the 2.2 micron window enables direct spectroscopic OCT assessment of tissue water content. We conclude that with further optimization, 2.2 micron OCT will have advantages in low-water-content tissue such as bone, as well as applications where extensive averaging is possible to compensate absorption losses.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography

Shau Poh Chong, Conrad W. Merkle, Dylan F. Cooke, Tingwei Zhang, Harsha Radhakrishnan, Leah Krubitzer, and Vivek J. Srinivasan
Opt. Lett. 40(21) 4911-4914 (2015)

Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility

David W. Cadotte, Adrian Mariampillai, Adam Cadotte, Kenneth K. C. Lee, Tim-Rasmus Kiehl, Brian C. Wilson, Michael G. Fehlings, and Victor X. D. Yang
Biomed. Opt. Express 3(5) 911-919 (2012)

Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography

Shau Poh Chong, Conrad W. Merkle, Conor Leahy, Harsha Radhakrishnan, and Vivek J. Srinivasan
Biomed. Opt. Express 6(4) 1429-1450 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).
    [Crossref]
  2. L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
    [Crossref]
  3. L. Shi and R. R. Alfano, Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods (Pan Stanford, 2017).
  4. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
    [Crossref]
  5. S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, Opt. Lett. 40, 4911 (2015).
    [Crossref]
  6. M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
    [Crossref]
  7. H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
    [Crossref]
  8. D. M. Wieliczka, S. Weng, and M. R. Querry, Appl. Opt. 28, 1714 (1989).
    [Crossref]
  9. D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
    [Crossref]
  10. R. F. Reinoso, B. A. Telfer, and M. Rowland, J. Pharmacol. Toxicol. Methods 38, 87 (1997).
    [Crossref]
  11. S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, Biomed. Opt. Express 8, 323 (2017).
    [Crossref]
  12. C. W. Merkle, C. Leahy, and V. J. Srinivasan, Biomed. Opt. Express 7, 4289 (2016).
    [Crossref]
  13. D. J. Faber, F. J. Van Der Meer, M. C. Aalders, and T. G. van Leeuwen, Opt. Express 12, 4353 (2004).
    [Crossref]
  14. B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, Opt. Express 21, 32450 (2013).
    [Crossref]
  15. M. N. Islam, “Near-infrared super-continuum lasers for early detection of breast and other cancers,” U.S. patent9,993,159 (June12, 2018).
  16. M. T. Bernucci, C. W. Merkle, and V. J. Srinivasan, Biomed. Opt. Express 9, 1020 (2018).
    [Crossref]

2018 (1)

2017 (1)

2016 (3)

C. W. Merkle, C. Leahy, and V. J. Srinivasan, Biomed. Opt. Express 7, 4289 (2016).
[Crossref]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
[Crossref]

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
[Crossref]

2015 (1)

2013 (4)

S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
[Crossref]

B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, Opt. Express 21, 32450 (2013).
[Crossref]

2004 (1)

1997 (1)

R. F. Reinoso, B. A. Telfer, and M. Rowland, J. Pharmacol. Toxicol. Methods 38, 87 (1997).
[Crossref]

1991 (1)

D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
[Crossref]

1989 (1)

Aalders, M. C.

Aernouts, B.

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
[Crossref]

Alfano, R. R.

L. Shi and R. R. Alfano, Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods (Pan Stanford, 2017).

Bernucci, M.

Bernucci, M. T.

Chong, S. P.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Cooke, D. F.

Dickerson, J.

D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
[Crossref]

Faber, D. J.

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Islam, M. N.

M. N. Islam, “Near-infrared super-continuum lasers for early detection of breast and other cancers,” U.S. patent9,993,159 (June12, 2018).

Jacques, S. L.

S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).
[Crossref]

Kawagoe, H.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Krubitzer, L.

Lammertyn, J.

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
[Crossref]

Leahy, C.

Liang, H.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
[Crossref]

Merkle, C. W.

Nishizawa, N.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
[Crossref]

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
[Crossref]

Querry, M. R.

Radhakrishnan, H.

Reinoso, R. F.

R. F. Reinoso, B. A. Telfer, and M. Rowland, J. Pharmacol. Toxicol. Methods 38, 87 (1997).
[Crossref]

Rodríguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
[Crossref]

Rowland, M.

R. F. Reinoso, B. A. Telfer, and M. Rowland, J. Pharmacol. Toxicol. Methods 38, 87 (1997).
[Crossref]

Saeys, W.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Shi, L.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
[Crossref]

L. Shi and R. R. Alfano, Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods (Pan Stanford, 2017).

Sordillo, L. A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
[Crossref]

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
[Crossref]

Srinivasan, V. J.

Telfer, B. A.

R. F. Reinoso, B. A. Telfer, and M. Rowland, J. Pharmacol. Toxicol. Methods 38, 87 (1997).
[Crossref]

Teranishi, T.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
[Crossref]

Tsuta, M.

Van Beers, R.

Van Der Meer, F. J.

van Leeuwen, T. G.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Wang, L.

Watté, R.

Weng, S.

White, D.

D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
[Crossref]

Widdowson, E.

D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
[Crossref]

Wieliczka, D. M.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Woodard, H.

D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
[Crossref]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Yamanaka, M.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
[Crossref]

Zamora-Rojas, E.

Zhang, T.

Appl. Opt. (1)

Appl. Phys. B (1)

H. Liang, R. Lange, B. Peric, and M. Spring, Appl. Phys. B 111, 589 (2013).
[Crossref]

Biomed. Opt. Express (3)

Br. J. Radiol. (1)

D. White, E. Widdowson, H. Woodard, and J. Dickerson, Br. J. Radiol. 64, 149 (1991).
[Crossref]

J. Biophotonics (1)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, J. Biophotonics 9, 38 (2016).
[Crossref]

J. Pharmacol. Toxicol. Methods (1)

R. F. Reinoso, B. A. Telfer, and M. Rowland, J. Pharmacol. Toxicol. Methods 38, 87 (1997).
[Crossref]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).
[Crossref]

Sci. Rep. (1)

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, Sci. Rep. 6, 31715 (2016).
[Crossref]

Other (2)

L. Shi and R. R. Alfano, Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods (Pan Stanford, 2017).

M. N. Islam, “Near-infrared super-continuum lasers for early detection of breast and other cancers,” U.S. patent9,993,159 (June12, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (A) Schematic of the 2.1 μm OCT system (BPF, bandpass filter; M, mirror; RC, reflective collimator; SL, scan lens; A, aperture; DC, dispersion compensation glass; PM, parabolic mirror; DG, diffraction grating; L, lens; LSC, line scan camera). (B) Spectra from different depths in water with the reference spectrum at 0 μm. (C) Sensitivity roll-off and (D) axial resolution versus depth with dispersion compensation (DC), compared to values obtained from the fringe envelope (circles). (E) System sensitivity, relative to the shot noise limit, using different operation modes of the camera (SNL, shot noise limit; FWC, full well capacity; EXP, camera exposure time). (F) Fractional contributions of different noise sources using the small FWC, long EXP mode.
Fig. 2.
Fig. 2. Cross-sectional images of the rat cranium and cortex with (A) 1.3 μm and (B) 2.1 μm systems. (C) Tissue OCT signal line profiles, with boundaries of skull and cortical layer I delimited by green lines (DM, dura mater). The green shaded area represents fitted range of cortical layer I. (D) Average tissue attenuation coefficients (mean±standard deviation) of rats #1–3. Horizontal lines indicate statistically significant differences determined by two-way ANOVA. P<0.001 (***).
Fig. 3.
Fig. 3. Spectroscopic measurements of water volume fraction based on absorption. (A, D, G, J) Normalized OCT subband line profiles for 25% (v/v) IL-20 solution, dry optical diffuser, skull, and brain (rat #2). Line profile fits (dark solid lines) are based on Eq. (2). (B, E, H, K) Wavelength-dependent fitted attenuation coefficients (μt) (red) are determined as the sum of fitted absorption attenuation (fwμa,w) (blue) and fitted scattering attenuation (μt,s) (green), assuming a scattering power, b, of 0.5. Pure water absorption (μa,w) is shown for reference (blue dashed line). (C, F, I, L) Estimated water volume fraction (fw) depends weakly on assumed b. Error bars indicate standard deviations.
Fig. 4.
Fig. 4. En face angiograms of rat cranium and cortex acquired by (A) 1.3 μm and (B) 2.1 μm OCT systems. (C) Skull vessel line profiles in an ROI (orange box) reveal diminished tails at 2.1 μm, as confirmed by cross-sectional angiograms within the ROI at the two wavelengths (insets). (D) Subband skull vessel line profiles within the ROI are similar from 2.02–2.12 μm, as seen in cross-sectional angiograms within the ROI (insets). (E–G) Depth (distance to the dura mater) color-coded en face angiograms of rats with different skull thicknesses (rats #2 and #4–5). Note that the assumed refractive index in C and D is n=1.33, while in E–G, nskull=1.5 and ncortex=1.33.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(z,λ)=C{[zzcf(λ)z0(λ)]2+1}1e2μt(λ)z,
I(z,λ)=C{[zzcf(λ)z0(λ)]2+1}1e2[A(λ500)b+fwμa,w(λ)]z.

Metrics