Abstract

Biological compound-eye systems have unique advantages in three-dimensional (3D) positioning based on light energy distribution. A curved compound eye was designed and manufactured to imitate a biological compound eye. To overcome the nonuniform off-axis response and enlarge the aperture of the eyelet, a novel dome light cone was designed. The dome light cone was designed as a conical structure, which consisted of a lot of fiber wires with a diameter of 6 μm. Additionally, based on the proposed biological compound-eye systems, an algorithm was proposed to obtain the 3D position of the object by analyzing the light location and intensity distribution. The effect of the illumination intensity, the position of the target’s center, and the non-repeatability were evaluated. The relative standard uncertainty in the 3D position was estimated to be 8.6%. Low uncertainty verified the validity of the 3D localization algorithm.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of an artificial compound eye system for three-dimensional object detection

Mengchao Ma, Fang Guo, Zhaolou Cao, and Keyi Wang
Appl. Opt. 53(6) 1166-1172 (2014)

Bionic compound eye for 3D motion detection using an optical freeform surface

Kuo Pang, Fengzhou Fang, Le Song, Yue Zhang, and Haoyang Zhang
J. Opt. Soc. Am. B 34(5) B28-B35 (2017)

Development of a low cost high precision three-layer 3D artificial compound eye

Hao Zhang, Lei Li, David L. McCray, Sebastian Scheiding, Neil J. Naples, Andreas Gebhardt, Stefan Risse, Ramona Eberhardt, Andreas Tünnermann, and Allen Y. Yi
Opt. Express 21(19) 22232-22245 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription