Abstract

We demonstrate efficient pulse compression of a 13.4 MHz, 534 fs, 123 W, Yb:YAG thin-disk oscillator down to 27 fs at 98 W average power, resulting in a record-high 166 MW peak power from an amplifier-free oscillator-driven setup. Our compressor is based on two stages: one multipass cell allowing us to reduce the pulse duration to sub-90 fs and, subsequently, a multiple-plate compressor, allowing us to reach 27 fs. The overall average power compression efficiency is 80%, and the beam has excellent beam quality and homogeneity. In addition, we demonstrate further spectral broadening that supports a transform limit of 5 fs in a second multiple-plate stage, demonstrating the potential for reaching a 100 W class, amplifier-free, few-cycle source in the near future. The performance of this unique source is very promising for applications previously restricted to amplified sources, such as efficient generation of extreme ultraviolet light at high repetition rate, and the generation of high-power broadband THz radiation.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical rectification of a 100  W average power mode-locked thin-disk oscillator

F. Meyer, N. Hekmat, S. Mansourzadeh, F. Fobbe, F. Aslani, M. Hoffmann, and C. J. Saraceno
Opt. Lett. 43(24) 5909-5912 (2018)

Compression of picosecond pulses from a thin-disk laser to 30fs at 4W average power

Bo-Han Chen, Martin Kretschmar, Dominik Ehberger, Andreas Blumenstein, Peter Simon, Peter Baum, and Tamas Nagy
Opt. Express 26(4) 3861-3869 (2018)

Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion

Dominik Bauer, Ivo Zawischa, Dirk H. Sutter, Alexander Killi, and Thomas Dekorsy
Opt. Express 20(9) 9698-9704 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription