Abstract

In this Letter, we present a spatially resolved pump-probe microscope based on a digital micromirror device (DMD). The microscope system enables the measurements of ultrafast transient processes at arbitrarily selected regions in a 3-D specimen. To achieve random-access scanning, the wavefront of the probe beam is modulated by the DMD via binary holography. By switching the holograms stored in the DMD memory, the laser focus can be rapidly moved in space in a discrete fashion. The microscope system has a field of view of 65×130×155μm3 in the x, y, and z axes, respectively; and a scanning speed of 8 kHz which is limited by the response time of the lock-in amplifier. To demonstrate the pump-probe system, we measured the ultrafast transient reflectivity of 2-D gold patterns on a silicon substrate and on silicon nitride cantilever beams. The results show an excellent signal-to-noise ratio and spatial-temporal resolution, as well as the 3-D random scanning capability. The new pump-probe microscope is a versatile instrument to characterize ultrafast 3-D phenomena with high spatial and temporal resolution, e.g., the propagation of localized surface plasmon resonance on curved surfaces.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging

Qiang Geng, Chenglin Gu, Jiyi Cheng, and Shih-chi Chen
Optica 4(6) 674-677 (2017)

Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography

Jiyi Cheng, Chenglin Gu, Dapeng Zhang, Dien Wang, and Shih-Chi Chen
Opt. Lett. 41(7) 1451-1454 (2016)

Random-access optical-resolution photoacoustic microscopy using a digital micromirror device

Jinyang Liang, Yong Zhou, Amy W. Winkler, Lidai Wang, Konstantin I. Maslov, Chiye Li, and Lihong V. Wang
Opt. Lett. 38(15) 2683-2686 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription