Abstract

Type-I fiber Bragg gratings photo-inscribed in hydrogen-loaded B/Ge co-doped silica single-mode optical fibers have been regenerated efficiently at 450°C, which is the lowest temperature reported so far. The mechanical strength of the annealed fiber is preserved while ensuring temperature sensing of the regenerated gratings up to 900°C. Unlike low temperature cycles (600°C), an annealing process at higher temperatures revealed faster regeneration for strong gratings. Changes in grating strength were also measured before the regeneration cycle. These behaviors suggest the contribution of different mechanisms to the regeneration process with different relative dynamics.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta
Opt. Express 19(2) 1198-1206 (2011)

Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers

Kai Lu, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Pan Zhang, Qin Tian, Xiangzi Ding, and Xueguang Qiao
Appl. Opt. 57(24) 6971-6975 (2018)

Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing

Tong Chen, Rongzhang Chen, Charles Jewart, Botao Zhang, Kevin Cook, John Canning, and Kevin P. Chen
Opt. Lett. 36(18) 3542-3544 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription