Abstract

We study noise propagation dynamics in a femtosecond oscillator by injecting external noise on the pump intensity. We utilize a spectrally resolved homodyne detection technique that enables simultaneous measurement of amplitude and phase quadrature noises of different spectral bands of the oscillator. We perform a modal analysis of the oscillator noise in which each mode corresponds to a particular temporal/spectral shape of the pulsed light. We compare this modal approach with the conventional noise detection methods and find the superiority of our method, in particular unveiling a complete physical picture of noise distribution in the femtosecond oscillator.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-detectivity optical heterodyne method for wideband carrier-envelope phase noise analysis of laser oscillators

Haochen Tian, Nils Raabe, Youjian Song, Günter Steinmeyer, and Minglie Hu
Opt. Lett. 43(13) 3108-3111 (2018)

Analysis and filtering of phase noise in an optical frequency comb at the quantum limit to improve timing measurements

Roman Schmeissner, Valerian Thiel, Clément Jacquard, Claude Fabre, and Nicolas Treps
Opt. Lett. 39(12) 3603-3606 (2014)

Optimizing homodyne detection of quadrature-noise squeezing by local-oscillator selection

Jeffrey H. Shapiro and Asif Shakeel
J. Opt. Soc. Am. B 14(2) 232-249 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription