Abstract

We compare the properties of the broadband supercontinuum (SC) generated in twisted and untwisted solid-core photonic crystal fibers when pumped by circularly polarized 40 picosecond laser pulses at 1064 nm. In the helically twisted fiber, fabricated by spinning the preform during the draw, the SC is robustly circularly polarized across its entire spectrum whereas, in the straight fiber, axial fluctuations in linear birefringence and polarization-dependent nonlinear effects cause the polarization state to vary randomly with the wavelength. Theoretical modelling confirms the experimental results. Helically twisted photonic crystal fibers permit the generation of pure circularly polarized SC light with excellent polarization stability against fluctuations in input power and environmental perturbations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers

Zhaoming Zhu and Thomas G. Brown
J. Opt. Soc. Am. B 21(2) 249-257 (2004)

Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber

P. Roth, Y. Chen, M. C. Günendi, R. Beravat, N. N. Edavalath, M. H. Frosz, G. Ahmed, G. K. L. Wong, and P. St. J. Russell
Optica 5(10) 1315-1321 (2018)

Off-axis core transmission characteristics of helically twisted photonic crystal fibers

Takeshi Fujisawa and Kunimasa Saitoh
Opt. Lett. 43(20) 4935-4938 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2005).
  2. P. St.J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [Crossref]
  3. J. M. Dudley, G. Genty, and A. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  4. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  5. H. I. Sztul, V. Kartazayev, and R. R. Alfano, Opt. Lett. 31, 2725 (2006).
    [Crossref]
  6. Z. M. Zhu and T. G. Brown, J. Opt. Soc. Am. B 21, 249 (2004).
    [Crossref]
  7. Z. M. Zhu and T. G. Brown, Opt. Express 12, 791 (2004).
    [Crossref]
  8. F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, Phys. Rev. Lett. 93, 183901 (2004).
    [Crossref]
  9. T. M. Fortier, S. T. Cundiff, I. T. Lima, B. S. Marks, C. R. Menyuk, and R. S. Windeler, Opt. Lett. 29, 2548 (2004).
    [Crossref]
  10. M. Tianprateep, J. Tada, and F. Kannari, Opt. Rev. 12, 179(2005).
    [Crossref]
  11. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
    [Crossref]
  12. H. H. Tu, Y. Liu, X. M. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, Opt. Express 20, 1113 (2012).
    [Crossref]
  13. S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
    [Crossref]
  14. Q. Chao and K. H. Wagner, Opt. Express 23, 33691 (2015).
    [Crossref]
  15. M. Almanee, J. W. Haus, I. Armas-Rivera, G. Beltrán-Pérez, B. Ibarra-Escamilla, M. Duran-Sanchez, R. I. Álvarez-Tamayo, E. A. Kuzin, Y. E. Bracamontes-Rodríguez, and O. Pottiez, Opt. Lett. 41, 4927 (2016).
    [Crossref]
  16. R. I. Laming and D. N. Payne, J. Lightwave Technol. 7, 2084(1989).
    [Crossref]
  17. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
    [Crossref]
  18. G. Prabhakar, P. Gregg, L. Rishoj, P. Kristensen, and S. Ramachandran, Opt. Express 27, 11547 (2019).
    [Crossref]
  19. P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
    [Crossref]
  20. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, Opt. Lett. 38, 2215 (2013).
    [Crossref]
  21. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
    [Crossref]
  22. C. R. Menyuk, IEEE J. Quantum Electron. 23, 174 (1987).
    [Crossref]
  23. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
    [Crossref]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).

2019 (1)

2017 (1)

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

2016 (1)

2015 (1)

2013 (2)

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, Opt. Lett. 38, 2215 (2013).
[Crossref]

2012 (2)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

H. H. Tu, Y. Liu, X. M. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, Opt. Express 20, 1113 (2012).
[Crossref]

2006 (3)

2005 (2)

M. Tianprateep, J. Tada, and F. Kannari, Opt. Rev. 12, 179(2005).
[Crossref]

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
[Crossref]

2004 (4)

1989 (2)

R. I. Laming and D. N. Payne, J. Lightwave Technol. 7, 2084(1989).
[Crossref]

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[Crossref]

1988 (1)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[Crossref]

1987 (1)

C. R. Menyuk, IEEE J. Quantum Electron. 23, 174 (1987).
[Crossref]

Agrawal, G. P.

F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, Phys. Rev. Lett. 93, 183901 (2004).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).

Alfano, R. R.

H. I. Sztul, V. Kartazayev, and R. R. Alfano, Opt. Lett. 31, 2725 (2006).
[Crossref]

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2005).

Almanee, M.

Álvarez-Tamayo, R. I.

Armas-Rivera, I.

Babic, F.

Barnett, S. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

Beltrán-Pérez, G.

Beravat, R.

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

Biancalana, F.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Boppart, S. A.

Bracamontes-Rodríguez, Y. E.

Brown, T. G.

Chao, Q.

Coen, A.

J. M. Dudley, G. Genty, and A. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Conti, C.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Cundiff, S. T.

Dudley, J. M.

J. M. Dudley, G. Genty, and A. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Duran-Sanchez, M.

Fateev, N. V.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
[Crossref]

Fortier, T. M.

Frosz, M. H.

Genty, G.

J. M. Dudley, G. Genty, and A. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Gregg, P.

Haus, J. W.

Ibarra-Escamilla, B.

Kang, M. S.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Kannari, F.

M. Tianprateep, J. Tada, and F. Kannari, Opt. Rev. 12, 179(2005).
[Crossref]

Kartazayev, V.

Knox, W. H.

F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, Phys. Rev. Lett. 93, 183901 (2004).
[Crossref]

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
[Crossref]

Kristensen, P.

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
[Crossref]

Kuzin, E. A.

Lægsgaard, J.

Laming, R. I.

R. I. Laming and D. N. Payne, J. Lightwave Technol. 7, 2084(1989).
[Crossref]

Lee, H. W.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Lima, I. T.

Lin, Q.

F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, Phys. Rev. Lett. 93, 183901 (2004).
[Crossref]

Liu, X. M.

Liu, Y.

Lu, F.

F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, Phys. Rev. Lett. 93, 183901 (2004).
[Crossref]

Marks, B. S.

Menyuk, C. R.

T. M. Fortier, S. T. Cundiff, I. T. Lima, B. S. Marks, C. R. Menyuk, and R. S. Windeler, Opt. Lett. 29, 2548 (2004).
[Crossref]

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[Crossref]

C. R. Menyuk, IEEE J. Quantum Electron. 23, 174 (1987).
[Crossref]

Nold, J.

Padgett, M. J.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

Payne, D. N.

R. I. Laming and D. N. Payne, J. Lightwave Technol. 7, 2084(1989).
[Crossref]

Pottiez, O.

Prabhakar, G.

Ramachandran, S.

Rammler, S.

Rishoj, L.

Russell, P. St.J.

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, Opt. Lett. 38, 2215 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

P. St.J. Russell, J. Lightwave Technol. 24, 4729 (2006).
[Crossref]

Smirnov, S. V.

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
[Crossref]

Stefani, A.

Sztul, H. I.

Tada, J.

M. Tianprateep, J. Tada, and F. Kannari, Opt. Rev. 12, 179(2005).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Tianprateep, M.

M. Tianprateep, J. Tada, and F. Kannari, Opt. Rev. 12, 179(2005).
[Crossref]

Tu, H. H.

Turchinovich, D.

Wabnitz, S.

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[Crossref]

Wagner, K. H.

Weiss, T.

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, Opt. Lett. 38, 2215 (2013).
[Crossref]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Windeler, R. S.

Wong, G. K. L.

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Xi, X. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

Zhu, Z. M.

Appl. Phys. B (1)

S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, Appl. Phys. B 81, 265 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

C. R. Menyuk, IEEE J. Quantum Electron. 23, 174 (1987).
[Crossref]

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[Crossref]

J. Lightwave Technol. (2)

R. I. Laming and D. N. Payne, J. Lightwave Technol. 7, 2084(1989).
[Crossref]

P. St.J. Russell, J. Lightwave Technol. 24, 4729 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (4)

Opt. Rev. (1)

M. Tianprateep, J. Tada, and F. Kannari, Opt. Rev. 12, 179(2005).
[Crossref]

Phil. Trans. R. Soc. A (1)

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

Phys. Rev. A (1)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[Crossref]

Phys. Rev. Lett. (2)

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. St.J. Russell, Phys. Rev. Lett. 110, 143903 (2013).
[Crossref]

F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, Phys. Rev. Lett. 93, 183901 (2004).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and A. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Science (1)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St.J. Russell, Science 337, 446 (2012).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

R. R. Alfano, The Supercontinuum Laser Source (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the experiment. Inset: photograph of the side of the twisted PCF, showing the periodic pattern caused by the spiraling hollow channels. The distance between the bright regions is one-sixth that of the helical pitch. (b) Measured loss of the LC (blue) and RC (magenta) polarized core modes as a function of the wavelength for the twisted PCF (twist period 4.7 mm). The loss peak at 1.4 μm is caused by water absorption. Inset: SEM of the PCF microstructure. (c) Dispersion D for both circular polarization states and circular birefringence B c (green) as a function of the wavelength for the twisted fiber, calculated by FE modeling based on the SEM. The measured value of B c at 1064 nm (1.1 μRIU) is in good agreement with the modelling.
Fig. 2.
Fig. 2. (a) Measured SC spectra for the twisted PCF when the pump source is LC (blue) or RC (magenta) polarized and the average pump power is 232 mW. The measured 1064 nm pump spectrum is plotted in red. The drop in spectral intensity at wavelengths > 1.4 μm is the result of Raman-shifting solitons encountering the 1.4 μm loss band [Fig. 1(b)]. The two FWM sidebands are marked by dotted vertical lines, spaced 111 THz from the pump frequency. (b) Measured output ellipticity (Stokes parameter S 3 ) at selected wavelengths for three different average pump powers, showing that the circular polarization state is robust against power fluctuations.
Fig. 3.
Fig. 3. (a) Measured SC spectra for the untwisted PCF when the pump source is LC (blue) or RC (magenta) polarized and the average pump power is 232 mW. (b) Measured Stokes parameter S 3 of SC light generated in an untwisted PCF at an average power of 232 mW. Although the overall spectral shape of the SC is identical to that in the twisted PCF (Fig. 2), there is severe wavelength-dependent depolarization for both LCP and RCP pump light.
Fig. 4.
Fig. 4. Poincaré sphere representations of the output polarization state for the data in Figs. 2(b) and 3. (a) Twisted PCF and (b) untwisted PCF.
Fig. 5.
Fig. 5. (a) Simulated SC spectra at 232 mW average pump power for a 60 cm length of twisted PCF (twist period = 4.7 mm) pumped by LCP (blue shaded) and RCP (red shaded) light. Ten ensemble simulations were used to model the effects of noise seeding. (The SC spectrum generated in the untwisted PCF is almost identical, so it is not shown.) The measured SC spectra from Fig. 2(a) are included for comparison. (b) Simulated ellipticity S 3 as a function of the wavelength for the twisted PCF. The pump polarization state is LCP (blue) and RCP (red). (c) Same as (b), but for the untwisted PCF. Note that the polarization state of each SC spectral component generated in the untwisted PCF is subject to shot-to-shot fluctuations.

Metrics