Abstract

We propose a novel physical mechanism based on periodic non-Hermitian potentials to efficiently control the complex spatial dynamics of broad-area lasers, particularly in vertical-cavity surface-emitting lasers (VCSELs), achieving a stable emission of maximum brightness. A radially dephased periodic refractive index and gain-loss modulations accumulate the generated light from the entire active layer and concentrate it around the structure axis to emit narrow, bright beams. The effect is due to asymmetric inward radial coupling between transverse wave vectors for particular phase differences of the refractive index and gain-loss modulations. Light is confined into a central beam with large intensity, opening the path to design compact, bright, and efficient broad-area light sources. We perform a comprehensive analysis to explore the maximum central intensity enhancement and concentration regimes. This Letter reveals that the optimum schemes are those holding unidirectional inward coupling, but not fulfilling a perfect local PT-symmetry.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lateral integration of vertical-cavity surface-emitting laser and slow light Bragg reflector waveguide devices

Toshikazu Shimada, Akihiro Matsutani, and Fumio Koyama
Appl. Opt. 53(9) 1766-1774 (2014)

Analysis of optical coupling behavior in two-dimensional implant-defined coherently coupled vertical-cavity surface-emitting laser arrays

Guanzhong Pan, Yiyang Xie, Chen Xu, Yibo Dong, Jun Deng, Hongda Chen, and Jie Sun
Photon. Res. 6(11) 1048-1055 (2018)

Vertical-cavity surface-emitting lasers for data communication and sensing

Anjin Liu, Philip Wolf, James A. Lott, and Dieter Bimberg
Photon. Res. 7(2) 121-136 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription