Abstract

This work reports the fabrication of an integrated axicon lens within a monolithic fiber-upon-planar format. The lens is self-assembled around a tapered optical fiber during flame hydrolysis planarization. The formed lens approximates an oblate axicon that upon launch generates a quasi-Bessel beam, guided in the planar optical layer of the substrate. Experimental observations are theoretically concurred using Fourier-based beam propagation.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-referenced interferometry for the characterization of axicon lens quality

David Kupka, Philip Schlup, and Randy A. Bartels
Appl. Opt. 47(9) 1200-1205 (2008)

Evanescent field refractometry in planar optical fiber

Christopher Holmes, Alexander Jantzen, Alan C. Gray, Paul C. Gow, Lewis G. Carpenter, Rex H. S. Bannerman, James C. Gates, and Peter G. R. Smith
Opt. Lett. 43(4) 791-794 (2018)

Guided self-assembly of integrated hollow Bragg waveguides

R.G. DeCorby, N. Ponnampalam, H.T. Nguyen, M.M. Pai, and T.J. Clement
Opt. Express 15(7) 3902-3915 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Durin, J. J. Miceli, and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [Crossref]
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [Crossref]
  3. I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
    [Crossref]
  4. D. G. Grier, Nature 424, 810 (2003).
    [Crossref]
  5. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
    [Crossref]
  6. K.-S. Lee and J. P. Rolland, Opt. Lett. 33, 1696 (2008).
    [Crossref]
  7. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
    [Crossref]
  8. T. Wulle and S. Herminghaus, Phys. Rev. Lett. 71, 209 (1993).
    [Crossref]
  9. P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
    [Crossref]
  10. O. Brzobohatý, T. Cizmár, and P. Zemánek, Opt. Express 16, 12688 (2008).
    [Crossref]
  11. S. Khonina, S. Degtyarev, D. Savelyev, and A. Ustinov, Opt. Express 25, 19052 (2017).
    [Crossref]
  12. A. V. Ustinov and S. N. Khonina, Opt. Mem. Neural Netw. 21, 133 (2012).
    [Crossref]
  13. H. Kurt, J. Opt. Soc. Am. B 26, 981 (2009).
    [Crossref]
  14. K. Bachus, E. S. de L. Filho, K. Wlodarczyk, R. Oleschuk, Y. Messaddeq, and H.-P. Loock, Opt. Express 24, 20346 (2016).
    [Crossref]
  15. H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
    [Crossref]
  16. S. Gorelick and A. De Marco, Opt. Express 26, 32324 (2018).
    [Crossref]
  17. S. G. Lynch, C. Holmes, S. A. Berry, J. C. Gates, A. Jantzen, T. I. Ferreiro, and P. G. R. Smith, Opt. Express 24, 8391 (2016).
    [Crossref]
  18. C. Holmes, J. C. Gates, and P. G. R. Smith, Opt. Express 22, 32150 (2014).
    [Crossref]
  19. C. Holmes, A. Jantzen, A. C. Gray, L. G. Carpenter, P. C. Gow, S. G. Lynch, J. C. Gates, and P. G. R. Smith, IEEE Sens. J. 17, 6960 (2017).
    [Crossref]
  20. C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, Opt. Lett. 43, 791 (2018).
    [Crossref]
  21. A. C. Gray, A. Jantzen, P. C. Gow, D. H. Smith, C. B. E. Gawith, P. G. R. Smith, and C. Holmes, Opt. Express 26, 9155 (2018).
    [Crossref]
  22. R. Kashyap and G. Nemova, J. Sens. 2009, 1 (2009).
    [Crossref]

2018 (3)

2017 (3)

S. Khonina, S. Degtyarev, D. Savelyev, and A. Ustinov, Opt. Express 25, 19052 (2017).
[Crossref]

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

C. Holmes, A. Jantzen, A. C. Gray, L. G. Carpenter, P. C. Gow, S. G. Lynch, J. C. Gates, and P. G. R. Smith, IEEE Sens. J. 17, 6960 (2017).
[Crossref]

2016 (2)

2014 (1)

2012 (1)

A. V. Ustinov and S. N. Khonina, Opt. Mem. Neural Netw. 21, 133 (2012).
[Crossref]

2009 (2)

H. Kurt, J. Opt. Soc. Am. B 26, 981 (2009).
[Crossref]

R. Kashyap and G. Nemova, J. Sens. 2009, 1 (2009).
[Crossref]

2008 (2)

2006 (1)

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

2003 (2)

D. G. Grier, Nature 424, 810 (2003).
[Crossref]

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
[Crossref]

2002 (1)

1998 (1)

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[Crossref]

1993 (1)

T. Wulle and S. Herminghaus, Phys. Rev. Lett. 71, 209 (1993).
[Crossref]

1987 (2)

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[Crossref]

J. Durin, J. J. Miceli, and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref]

Anderson, D.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
[Crossref]

Bachus, K.

Bannerman, R. H. S.

Berry, S. A.

Brzobohatý, O.

Cabrini, S.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Carpenter, L. G.

C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, Opt. Lett. 43, 791 (2018).
[Crossref]

C. Holmes, A. Jantzen, A. C. Gray, L. G. Carpenter, P. C. Gow, S. G. Lynch, J. C. Gates, and P. G. R. Smith, IEEE Sens. J. 17, 6960 (2017).
[Crossref]

Carpentiero, A.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Chen, Z.

Cizmár, T.

Cojoc, D.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Dahlem, M. S.

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

De Angelis, F.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

de L. Filho, E. S.

De Marco, A.

Degiorgio, V.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Degtyarev, S.

Di Fabrizio, E.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Ding, Z.

Durin, J.

J. Durin, J. J. Miceli, and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref]

Durnin, J.

Eberly, J.

J. Durin, J. J. Miceli, and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref]

Ferreiro, T. I.

Gates, J. C.

Gawith, C. B. E.

Gorelick, S.

Gow, P. C.

Gray, A. C.

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[Crossref]

Grimm, R.

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[Crossref]

Herminghaus, S.

T. Wulle and S. Herminghaus, Phys. Rev. Lett. 71, 209 (1993).
[Crossref]

Holmes, C.

Jantzen, A.

Johannisson, P.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
[Crossref]

Kashyap, R.

R. Kashyap and G. Nemova, J. Sens. 2009, 1 (2009).
[Crossref]

Khonina, S.

Khonina, S. N.

A. V. Ustinov and S. N. Khonina, Opt. Mem. Neural Netw. 21, 133 (2012).
[Crossref]

Kurt, H.

Lee, K.-S.

Liberale, C.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Lisak, M.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
[Crossref]

Loock, H.-P.

Lynch, S. G.

C. Holmes, A. Jantzen, A. C. Gray, L. G. Carpenter, P. C. Gow, S. G. Lynch, J. C. Gates, and P. G. R. Smith, IEEE Sens. J. 17, 6960 (2017).
[Crossref]

S. G. Lynch, C. Holmes, S. A. Berry, J. C. Gates, A. Jantzen, T. I. Ferreiro, and P. G. R. Smith, Opt. Express 24, 8391 (2016).
[Crossref]

Manek, I.

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[Crossref]

Marklund, M.

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
[Crossref]

Melkonyan, H.

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Messaddeq, Y.

Miceli, J. J.

J. Durin, J. J. Miceli, and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref]

Mora, S.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Moreira, P.

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Nelson, J. S.

Nemova, G.

R. Kashyap and G. Nemova, J. Sens. 2009, 1 (2009).
[Crossref]

Oleschuk, R.

Ovchinnikov, Y. B.

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[Crossref]

Prasciolu, M.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Ren, H.

Rolland, J. P.

Savelyev, D.

Sloyan, K.

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Smith, D. H.

Smith, P. G. R.

Twayana, K.

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

Ustinov, A.

Ustinov, A. V.

A. V. Ustinov and S. N. Khonina, Opt. Mem. Neural Netw. 21, 133 (2012).
[Crossref]

Wlodarczyk, K.

Wulle, T.

T. Wulle and S. Herminghaus, Phys. Rev. Lett. 71, 209 (1993).
[Crossref]

Zemánek, P.

Zhao, Y.

IEEE Photon. J. (1)

H. Melkonyan, K. Sloyan, K. Twayana, P. Moreira, and M. S. Dahlem, IEEE Photon. J. 9, 1 (2017).
[Crossref]

IEEE Sens. J. (1)

C. Holmes, A. Jantzen, A. C. Gray, L. G. Carpenter, P. C. Gow, S. G. Lynch, J. C. Gates, and P. G. R. Smith, IEEE Sens. J. 17, 6960 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Sens. (1)

R. Kashyap and G. Nemova, J. Sens. 2009, 1 (2009).
[Crossref]

Microelectron. Eng. (1)

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, Microelectron. Eng. 83, 804 (2006).
[Crossref]

Nature (1)

D. G. Grier, Nature 424, 810 (2003).
[Crossref]

Opt. Commun. (2)

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[Crossref]

P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, Opt. Commun. 222, 107 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mem. Neural Netw. (1)

A. V. Ustinov and S. N. Khonina, Opt. Mem. Neural Netw. 21, 133 (2012).
[Crossref]

Phys. Rev. Lett. (2)

J. Durin, J. J. Miceli, and J. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[Crossref]

T. Wulle and S. Herminghaus, Phys. Rev. Lett. 71, 209 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic illustration of ray paths for axicon lenses, including (a) obtuse apex-angle and (b)–(d) acute apex axicon with single internal reflection.
Fig. 2.
Fig. 2. Schematic illustration showing consecutive steps (a)–(f) of integrated optical fiber fabrication and self-assembly of the axicon lens.
Fig. 3.
Fig. 3. Scanning electron micrograph images of the attached optical fiber, showing distal end of the fiber, with a self-assembled lens.
Fig. 4.
Fig. 4. Profilometry of the attached optical fiber, showing the topology of (a) acute angled axicon formed by the tapered fiber and (c) distal end of the fiber with a self-assembled lens, formed from consolidated FHD glass. Analytical approximation for the topology is shown in (b) and (d), respectively.
Fig. 5.
Fig. 5. Images from CMOS camera taken (a) prior to launch, (b) upon launch at the distal end of the fiber, (c) upon launch at 3 mm offset upon the optical axis, and (d) upon a 6 mm offset (scale for all images equivalent).
Fig. 6.
Fig. 6. Cross-sectional view of a three-dimensional FFT-BPM, showing the modal intensity just before light enters the integrated lens. Arrows indicate directional flow of power.
Fig. 7.
Fig. 7. Three-dimensional FFT-BPM showing the intensity distribution after the integrated lens.

Metrics