Abstract

In this Letter, we present a new method for recording spatially incoherent common-path off-axis Fourier holograms. This method records the three-dimensional (3D) information of an object into a Fourier hologram without the need of any mechanical scanning with incoherent illumination. The proposed setup consists of two gratings to form a common-path configuration, and two customized cells to create a rotational and radial shearing interferometer. While the first grating is placed on the first image plane, the second grating shifts axially from the second image plane to build off-axis geometry. A lens is used to combine two beams to generate the maximum overlapping area at the hologram plane. Proof-of-concept experiments confirm the ability of such a system to achieve the maximum overlapping interference area, stability of the system against the vibration of surrounding environment, numerical reconstruction using only one fast Fourier transform, and 3D capability to capture a 3D object illuminated by an LED light.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially incoherent common-path off-axis color digital holography

Cuong M. Nguyen, Dilband Muhammad, and Hyuk-Sang Kwon
Appl. Opt. 57(6) 1504-1509 (2018)

Incoherent off-axis Fourier triangular color holography

Yuhong Wan, Tianlong Man, and Dayong Wang
Opt. Express 22(7) 8565-8573 (2014)

Spatially incoherent off-axis Fourier holography without using spatial light modulator (SLM)

Dilband Muhammad, Cuong M. Nguyen, Jihoon Lee, and Hyuk-Sang Kwon
Opt. Express 24(19) 22097-22103 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription