Abstract

Chip-based soliton frequency combs have been demonstrated on various material platforms, offering broadband, mutually coherent, and equally spaced frequency lines desired for many applications. Lithium niobate (LN), possessing both second- and third-order optical nonlinearities, as well as integrability on insulating substrates, has emerged as a novel source for microcomb generation and controlling. Here we demonstrate mode-locked soliton microcombs generated around 2 μm in a high-Q z-cut LN microring resonator. The intracavity photorefractive effect is found to be still dominant over the thermal effect in the 2 μm region, which facilitates direct accessing soliton states in the red-detuned regime, as reported in the telecom band. We also find that intracavity stimulated Raman scattering is greatly suppressed when moving the pump wavelength from the telecom band to 2 μm, thus alleviating Raman–Kerr comb competition. This Letter expands mode-locked LN microcombs to 2 μm, and could enable a variety of potential applications based on LN nanophotonic platform.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-starting bi-chromatic LiNbO3 soliton microcomb

Yang He, Qi-Fan Yang, Jingwei Ling, Rui Luo, Hanxiao Liang, Mingxiao Li, Boqiang Shen, Heming Wang, Kerry Vahala, and Qiang Lin
Optica 6(9) 1138-1144 (2019)

Dispersion engineered high quality lithium niobate microring resonators

Yang He, Hanxiao Liang, Rui Luo, Mingxiao Li, and Qiang Lin
Opt. Express 26(13) 16315-16322 (2018)

High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators

Zheng Gong, Alexander Bruch, Mohan Shen, Xiang Guo, Hojoong Jung, Linran Fan, Xianwen Liu, Liang Zhang, Junxi Wang, Jinmin Li, Jianchang Yan, and Hong X. Tang
Opt. Lett. 43(18) 4366-4369 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription