Abstract

When confronted with a pulse train whose intensity and/or phase versus time varies from pulse to pulse, multi-shot pulse-measurement techniques usually exhibit a coherent artifact (CA), which substantially complicates the interpretation of the measurement. In frequency-resolved optical gating (FROG), such instabilities are indicated by discrepancies between the measured and retrieved FROG traces. Here we consider the simultaneous retrieval of the CA and the average pulse characteristics from a single FROG trace in the limit of significant fluctuations. We use a modified generalized projections algorithm. Two electric fields are simultaneously retrieved, while the data constraint is updated as the algorithm progresses using only the assumption that the trace can be modeled as the sum of two spectrograms, one corresponding to the pulse and the other corresponding to the CA. An additional flat-spectral-phase constraint is added to one of the fields to ensure that it only reacts to the presence of the CA. Using this novel retrieval method, the complete retrieval of the characteristics of pulses in an unstable train from FROG traces is demonstrated.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections

Kenneth W. DeLong, David N. Fittinghoff, Rick Trebino, Bern Kohler, and Kent Wilson
Opt. Lett. 19(24) 2152-2154 (1994)

Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating

Rick Trebino and Daniel J. Kane
J. Opt. Soc. Am. A 10(5) 1101-1111 (1993)

Real-time inversion of polarization gate frequency-resolved optical gating spectrograms

Daniel J. Kane, Jeremy Weston, and Kai-Chien J. Chu
Appl. Opt. 42(6) 1140-1144 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription