Abstract

We demonstrate high-energy resonant dispersive-wave emission in the deep ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34 cm) hollow capillary fibers. This down-scaling in length compared to previous results in capillaries is achieved by using small core diameters (100 and 150 μm) and pumping with 6.3 fs pulses at 800 nm. We generate pulses with energies of 4 to 6 μJ across the deep ultraviolet in a 100 μm capillary and up to 11 μJ in a 150 μm capillary. From comparisons to simulations we estimate the ultraviolet pulse to be 2 to 2.5 fs in duration. We also numerically study the influence of pump duration on the bandwidth of the dispersive wave.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients

Christian Brahms, Federico Belli, and John C. Travers
Opt. Lett. 45(16) 4456-4459 (2020)

Generation of broadband circularly polarized deep-ultraviolet pulses in hollow capillary fibers

Athanasios Lekosiotis, Federico Belli, Christian Brahms, and John C. Travers
Opt. Lett. 45(20) 5648-5651 (2020)

Highly efficient deep UV generation by four-wave mixing in gas-filled hollow-core photonic crystal fiber

Federico Belli, Amir Abdolvand, John C. Travers, and Philip St. J. Russell
Opt. Lett. 44(22) 5509-5512 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription