Abstract

The optical characterization of atomic-layer materials is significant for the clarification of fundamental physical properties of newly emerging nanomaterials. Here we propose to utilize the surface plasmon resonance (SPR) holographic microscopy to measure the complex refractive index (RI) of atomic-layer materials (i.e., graphene). We unambiguously determine the complex RI of single-layer graphene and few-layer graphene by fitting the measured reflection phase shift difference with theoretical values under the five-layer SPR model. The measurement results of the graphene layer grown by chemical vapor deposition at the visible range agree with the previous reports. Our method offers a cost-effective and robust avenue to characterize the complex RI of atomic-layer materials with distinct optical absorption, particularly the two-dimensional materials.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance for characterization of large-area atomic-layer graphene film

Henri Jussila, He Yang, Niko Granqvist, and Zhipei Sun
Optica 3(2) 151-158 (2016)

Integrated digital holographic microscopy based on surface plasmon resonance

Siqing Dai, Jiwei Zhang, Hua Lu, Teli Xi, Chaojie Ma, Ying Li, Jianglei Di, and Jianlin Zhao
Opt. Express 26(19) 25437-25445 (2018)

Wavelength-multiplexing surface plasmon holographic microscopy

Jiwei Zhang, Siqing Dai, Jinzhan Zhong, Teli Xi, Chaojie Ma, Ying Li, Jianglei Di, and Jianlin Zhao
Opt. Express 26(10) 13549-13560 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription