Abstract

We demonstrate a computational phase correction algorithm that is able to correct for phase and timing fluctuations of arbitrary dual comb spectra. By augmenting a Kalman filter with a global search and decoupling the interferogram estimation, we show that dual comb signals having a wide range of structures can be predicted and corrected. Furthermore, we derive an upper bound for the accuracy of any self-correction technique and show that the augmented filter is capable of reaching this bound when the phase and frequency noise are bandlimited. Finally, we show how expectation maximization can be used to learn the statistical parameters of a system without any free parameters. This approach is hands-off, robust, and accurate for a wide range of dual comb systems. Demonstration code is provided.

© 2019 Optical Society of America

Full Article  |  PDF Article

Corrections

4 June 2019: A typographical correction was made to Fig. 2 and the abstract.


OSA Recommended Articles
Digital correction method for realizing a phase-stable dual-comb interferometer

Zebin Zhu, Kai Ni, Qian Zhou, and Guanhao Wu
Opt. Express 26(13) 16813-16823 (2018)

Photonic generation of phase-stable and wideband chirped microwave signals based on phase-locked dual optical frequency combs

Yitian Tong, Qian Zhou, Daming Han, Baiyu Li, Weilin Xie, Zhangweiyi Liu, Jie Qin, Xiaocheng Wang, Yi Dong, and Weisheng Hu
Opt. Lett. 41(16) 3787-3790 (2016)

Computational coherent averaging for free-running dual-comb spectroscopy

Lukasz A. Sterczewski, Jonas Westberg, and Gerard Wysocki
Opt. Express 27(17) 23875-23893 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Code 1       Demonstrated code for computational phase correction by an augmented Kalman filter.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription