Abstract

We propose and demonstrate the use of a single-frequency laser and an acousto-optic modulator (AOM) for quadrature demodulation of fiber-optic ultrasonic sensors whose spectrum features sinusoidal fringes. The light from the laser is split into two channels, before it is combined into the fiber leading to the sensor, with an AOM in one of the channels introducing a frequency shift to the light. Thus, the light in the fiber contains two wavelengths whose difference is designed to be an odd number times a quarter of the free spectral range of the sensor, so that at least one of them is located on the spectral slope of the fringes for sensitive ultrasonic detection without the need to tune the laser wavelength. The intensities of the light in the two channels are sinusoidally modulated at two different frequencies much higher than the ultrasonic frequency, and the ultrasound signal is encoded into the amplitude of the intensity modulations. The optical signals from the two channels are separated in the frequency domain, and the ultrasound signals are detected by simple envelope detectors. Using a low-finesse Fabry–Perot interferometric sensor formed by two weak chirped fiber Bragg gratings written on a coiled bend-insensitive fiber, we demonstrate that this method can perform ultrasound detection, even when the spectrum of the sensor experiences large environmental drifts.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiplexing fiber-optic ultrasound sensors using laser intensity modulation

Guigen Liu and Ming Han
Opt. Lett. 44(4) 751-754 (2019)

Multiplexed fiber-ring laser sensors for ultrasonic detection

Tongqing Liu, Lingling Hu, and Ming Han
Opt. Express 21(25) 30474-30480 (2013)

Adaptive ultrasonic sensor using a fiber ring laser with tandem fiber Bragg gratings

Tongqing Liu, Lingling Hu, and Ming Han
Opt. Lett. 39(15) 4462-4465 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1       Signals from the two quadrature channels as the sensor spectrum experienced strain-induced shifts.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription