Abstract

The plasmonic nanoantenna has attracted intensive attention over the last decades owing to its unique optical response. Although various nanoantennas have been designed, so far very few efforts have been devoted to their dynamic tunability. Here we present a study on dynamically tunable bowtie nanoantennas integrated on a vanadium dioxide thin film with a thermal phase transition. The insulator–metal transition of vanadium dioxide changes its electric feature and permittivity; hence, the resonance of the bowtie nanoantennas is actively tuned by varying the temperature of the device. Further, by adjusting the gap of the bowtie and the edge size of the nanotriangle at a different temperature, the shift of the resonant wavelength of the nanoantenna has been found to increase for a larger triangle edge size, but less dependent on the gap width. The features suggest that VO2-integrated nanoantennas may have applications in dynamically tunable high-harmonic generation, single-molecule fluorescence enhancement, and nanolasers.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical antennas enabled by the phase transition in vanadium dioxide

Stuart K. Earl, Timothy D. James, Timothy J. Davis, Jeffrey C. McCallum, Robert E. Marvel, Richard F. Haglund, and Ann Roberts
Opt. Express 21(22) 27503-27508 (2013)

Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials

Priten B. Savaliya, Arun Thomas, Rishi Dua, and Anuj Dhawan
Opt. Express 25(20) 23755-23772 (2017)

Size effects on metal-insulator phase transition in individual vanadium dioxide nanowires

Liu Hongwei, Lu Junpeng, Zheng Minrui, Tang Sing Hai, Sow Chorng Haur, Zhang Xinhai, and Ke Lin
Opt. Express 22(25) 30748-30755 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription