Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nanosecond laser coupling for increased filament ablation

Abstract

Laser filaments can project intensities sufficient to ablate materials at long ranges, but the clamping of a filament’s intensity to 1014W/cm2 limits the effective ablation of targets with which the laser pulses interact. We seek to identify regimes in which auxiliary radiation can be used to augment the ablation created by single filaments. In this work, the combination of an 800 nm, 50 fs beam at single filament intensity and a 1064 nm, 8 ns laser pulse is studied. The ablation of GaAs is quantitatively evaluated for varying interpulse delays. Under optimum conditions, an ∼threefold increase in the ablation is observed. The metrology and surface features of the resultant ablation craters are examined to gain insight on the mechanisms of ablation in the dual-pulse cases.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-plasma coupling for enhanced ablation of GaAs with combined femtosecond and nanosecond pulses

Haley Kerrigan, Majid Masnavi, Robert Bernath, Shermineh Rostami Fairchild, and Martin Richardson
Opt. Express 29(12) 18481-18494 (2021)

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source

Konstantin Mishchik, Guillaume Bonamis, Jie Qiao, John Lopez, Eric Audouard, Eric Mottay, Clemens Hönninger, and Inka Manek-Hönninger
Opt. Lett. 44(9) 2193-2196 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved