Abstract

Quantum digital signature (QDS) can guarantee message integrity and non-repudiation with information-theoretical security, and it has attracted more attention recently. Since proposed by Andersson et al. [Phys. Rev. A 93, 032325 (2016) [CrossRef]  ], a quantum digital signature protocol using an insecure channel has been realized with several different quantum key distribution (QKD) systems. Here we report an experimental QDS based on a BB84 QKD system. An asymmetric Faraday–Sagnac–Michelson interferometer structure has been designed in our system, which is intrinsically stable against channel disturbance. The innovatory structure supports the system to work at high speed and, in practice, the repetition rate is in gigahertz. A 0.044 bit/s signature rate has been attained with a 25 dB channel loss composed of a 25 km installed fiber with additional optical attenuation in a 1010 security level. Thus, our QDS device is stable and highly efficient. This Letter provides a further step for the practical application of QDS.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

Xue-Bi An, Hao Zhang, Chun-Mei Zhang, Wei Chen, Shuang Wang, Zhen-Qiang Yin, Qin Wang, De-Yong He, Peng-Lei Hao, Shu-Feng Liu, Xing-Yu Zhou, Guang-Can Guo, and Zheng-Fu Han, "Practical quantum digital signature with a gigahertz BB84 quantum key distribution system: erratum," Opt. Lett. 44, 1133-1133 (2019)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-5-1133

OSA Recommended Articles
Practical gigahertz quantum key distribution robust against channel disturbance

Shuang Wang, Wei Chen, Zhen-Qiang Yin, De-Yong He, Cong Hui, Peng-Lei Hao, Guan-Jie Fan-Yuan, Chao Wang, Li-Jun Zhang, Jie Kuang, Shu-Feng Liu, Zheng Zhou, Yong-Gang Wang, Guang-Can Guo, and Zheng-Fu Han
Opt. Lett. 43(9) 2030-2033 (2018)

Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system

Robert J. Collins, Ryan Amiri, Mikio Fujiwara, Toshimori Honjo, Kaoru Shimizu, Kiyoshi Tamaki, Masahiro Takeoka, Erika Andersson, Gerald S. Buller, and Masahide Sasaki
Opt. Lett. 41(21) 4883-4886 (2016)

280-km experimental demonstration of a quantum digital signature with one decoy state

Hua-Jian Ding, Jing-Jing Chen, Liang Ji, Xing-Yu Zhou, Chun-Hui Zhang, Chun-Mei Zhang, and Qin Wang
Opt. Lett. 45(7) 1711-1714 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription