Abstract

We report on the broadening of the optical bandwidth of a distributed feedback quantum cascade laser (QCL) caused by the application of radio frequency (RF) noise to the injection current. The broadening is quantified both via Lamb-dip spectroscopy and the frequency noise power spectral density (PSD). The linewidth of the unperturbed QCL (emitting at 5.3  μm) determined by Lamb-dip spectroscopy is 680±170  kHz, and is in reasonable agreement with the linewidth of 460±40  kHz estimated by integrating the PSD measured under the same laser operating conditions. Measurements with both techniques reveal that by mixing the driving current with broadband RF noise the laser lineshape was reproducibly broadened up to ca 6 MHz with an increasing Gaussian contribution. The effects of linewidth broadening are then demonstrated in the two-color coherent transient spectra of nitric oxide.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter
Opt. Lett. 36(16) 3109-3111 (2011)

Narrow-linewidth quantum cascade laser at 8.6  μm

Eugenio Fasci, Nicola Coluccelli, Marco Cassinerio, Alessio Gambetta, Laurent Hilico, Livio Gianfrani, Paolo Laporta, Antonio Castrillo, and Gianluca Galzerano
Opt. Lett. 39(16) 4946-4949 (2014)

Experimental validation of a simple approximation to determine the linewidth of a laser from its frequency noise spectrum

Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Pierre Thomann, Gianni Di Domenico, and Stéphane Schilt
Appl. Opt. 51(20) 4582-4588 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription