Abstract

We propose a scheme to realize nonlinear coherent perfect absorption (CPA) at the nanoscale using epsilon-near-zero (ENZ) plasmonic waveguides. The general conditions to achieve CPA in a linear ENZ plasmonic waveguide are analyzed and presented. The proposed ENZ waveguides support an effective ENZ response at their cutoff frequency, where the CPA effect occurs under the illumination of two counterpropagating plane waves with equal amplitudes and appropriate phase distributions. In addition, the strong and uniform field enhancement inside the nanochannels of the waveguides at the ENZ resonance can efficiently boost Kerr nonlinearities, resulting in a new all-optical switching intensity-dependent CPA phenomenon that can be tunable with ultrafast speed. The proposed free-standing ENZ structures combine third-order nonlinear functionality with standing wave CPA interference effects in a nanoscale plasmonic configuration, thus leading to a novel degree of tunable light-matter interactions achieved in subwavelength regions. Our findings provide a new platform to efficiently excite nonlinear phenomena at the nanoscale and design tunable coherent perfect absorbers.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs

Jing Jing Yang, Yan Francescato, Stefan A Maier, Fuchun Mao, and Ming Huang
Opt. Express 22(8) 9107-9114 (2014)

Tunable and broadband coherent perfect absorption by ultrathin black phosphorus metasurfaces

Tianjing Guo and Christos Argyropoulos
J. Opt. Soc. Am. B 36(11) 2962-2971 (2019)

Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion

Klaus Halterman and J. Merle Elson
Opt. Express 22(6) 7337-7348 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription