Abstract

Extended-focus optical coherence tomography (xf-OCT) is a variant of optical coherence tomography (OCT) wherein the illumination and/or detection modes are engineered to provide a constant diffractionless lateral resolution over an extended depth of field (typically 3 to 10× the Rayleigh range). xf-OCT systems operating at 800 nm have been devised and used in the past to image brain structures at high-resolution in vivo, but are limited to 500μm in penetration depth due to their short illumination wavelength. Here we present an xf-OCT system optimized to an image deeper within the cortex by using a longer illumination central wavelength of 1310 nm. The system offers a lateral resolution of 3 and 6.5 μm, over a depth of 900 μm and >1.5mm using a 10× and 5× objective, respectively, in air. We characterize the system’s resolution using microbeads embedded in PDMS and demonstrate its capabilities by imaging the cortical structure and microvasculature in anesthetized mice to a depth of 0.8mm. Finally, we illustrate the difference in penetration depths obtainable with the new system and an xf-OCT system operating at 800 nm.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice

Yuandong Li, Peijun Tang, Shaozhen Song, Adiya Rakymzhan, and Ruikang K. Wang
Opt. Lett. 44(20) 5037-5040 (2019)

Quantitative imaging of microvascular blood flow networks in deep cortical layers by 1310 nm μODT

Jiang You, Qiujia Zhang, Kicheon Park, Congwu Du, and Yingtian Pan
Opt. Lett. 40(18) 4293-4296 (2015)

Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography

Shau Poh Chong, Conrad W. Merkle, Dylan F. Cooke, Tingwei Zhang, Harsha Radhakrishnan, Leah Krubitzer, and Vivek J. Srinivasan
Opt. Lett. 40(21) 4911-4914 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics