Abstract

Chiral plasmonic nanostructures with giant and tunable chiral optical responses hold great potential in chiral sensing applications for chemistry, biology, and pharmacy, etc. For the origin of the chiral optical response of artificial plasmonic chiral assemblies, resonant and off-resonant coupling mechanisms have been figured out. However, most existing chiral plasmonic assemblies are based on only one mechanism, where strong optical chirality always compromises with spectral tunability. To release the trade-off between the strength and spectral tunability, we employ a combination of resonant and off-resonant coupling mechanisms and demonstrate a pronounced and tailorable chiral optical response based on plasmonic meta-atoms with distinct shapes. We anticipate that our strategy provides more flexibility in designing chiral plamsonic nanostructures and promotes the field further towards customized chiral plasmonic platforms.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Correlation of circular differential optical absorption with geometric chirality in plasmonic meta-atoms

Jon C. Wilson, Philipp Gutsche, Sven Herrmann, Sven Burger, and Kevin M. McPeak
Opt. Express 27(4) 5097-5115 (2019)

Plasmonic rod dimers as elementary planar chiral meta-atoms

Sergei V. Zhukovsky, Christian Kremers, and Dmitry N. Chigrin
Opt. Lett. 36(12) 2278-2280 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).
  2. M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
    [Crossref]
  3. J. Zhang, K. F. Macdonald, and N. I. Zheludev, Light Sci. Appl. 1, e18 (2012).
    [Crossref]
  4. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
    [Crossref]
  5. Y. Tang and A. E. Cohen, Science 332, 333 (2011).
    [Crossref]
  6. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
    [Crossref]
  7. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
    [Crossref]
  8. M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
    [Crossref]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
    [Crossref]
  10. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
    [Crossref]
  11. A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
    [Crossref]
  12. V. E. Ferry, M. Hentschel, and A. P. Alivisatos, Nano Lett. 15, 8336 (2015).
    [Crossref]
  13. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
    [Crossref]
  14. Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).
    [Crossref]
  15. H. Gao, J. M. Mcmahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, Opt. Express 17, 2334 (2009).
    [Crossref]
  16. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Opt. Lett. 35, 1593 (2010).
    [Crossref]
  17. M. Decker, M. W. Klein, M. Wegener, and S. Linden, Opt. Lett. 32, 856 (2007).
    [Crossref]

2015 (2)

M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, Nano Lett. 15, 8336 (2015).
[Crossref]

2014 (1)

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

2012 (5)

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

J. Zhang, K. F. Macdonald, and N. I. Zheludev, Light Sci. Appl. 1, e18 (2012).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

2011 (2)

Y. Tang and A. E. Cohen, Science 332, 333 (2011).
[Crossref]

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

2010 (1)

2009 (2)

H. Gao, J. M. Mcmahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, Opt. Express 17, 2334 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

2008 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

2007 (1)

2006 (1)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Alivisatos, A. P.

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, Nano Lett. 15, 8336 (2015).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).
[Crossref]

Azad, A. K.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).
[Crossref]

Berova, N.

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
[Crossref]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, Science 332, 333 (2011).
[Crossref]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Opt. Lett. 35, 1593 (2010).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, Opt. Lett. 32, 856 (2007).
[Crossref]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
[Crossref]

Fan, Z.

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, Nano Lett. 15, 8336 (2015).
[Crossref]

Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Gao, H.

Gérard, V. A.

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Giessen, H.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Govorov, A. O.

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Gray, S. K.

Gun’Ko, Y. K.

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
[Crossref]

Hentschel, M.

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, Nano Lett. 15, 8336 (2015).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
[Crossref]

Henzie, J.

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Kivshar, Y. S.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

Klein, M. W.

Lapine, M.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

Lee, M. H.

Linden, S.

Liu, M.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Macdonald, K. F.

J. Zhang, K. F. Macdonald, and N. I. Zheludev, Light Sci. Appl. 1, e18 (2012).
[Crossref]

Mcmahon, J. M.

Naik, R. R.

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Nakanishi, K.

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
[Crossref]

Odom, T. W.

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Powell, D. A.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Schäferling, M.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
[Crossref]

Schatz, G. C.

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Shadrivov, I. V.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

Singh, R.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Slocik, J. M.

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Soukoulis, C. M.

Tang, Y.

Y. Tang and A. E. Cohen, Science 332, 333 (2011).
[Crossref]

Taylor, A. J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

von Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Opt. Lett. 35, 1593 (2010).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, Opt. Lett. 32, 856 (2007).
[Crossref]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

Woody, R. W.

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Zhang, J.

J. Zhang, K. F. Macdonald, and N. I. Zheludev, Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Zhang, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

Zhao, R.

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. Macdonald, and N. I. Zheludev, Light Sci. Appl. 1, e18 (2012).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

J. Mater. Chem. (1)

A. O. Govorov, Y. K. Gun’Ko, J. M. Slocik, V. A. Gérard, Z. Fan, and R. R. Naik, J. Mater. Chem. 21, 16806 (2011).
[Crossref]

Light Sci. Appl. (1)

J. Zhang, K. F. Macdonald, and N. I. Zheludev, Light Sci. Appl. 1, e18 (2012).
[Crossref]

Nano Lett. (2)

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, Nano Lett. 12, 2542 (2012).
[Crossref]

V. E. Ferry, M. Hentschel, and A. P. Alivisatos, Nano Lett. 15, 8336 (2015).
[Crossref]

Nat. Commun. (3)

Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, Nat. Commun. 3, 942 (2012).
[Crossref]

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nat. Commun. 5, 4441 (2014).
[Crossref]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
[Crossref]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[Crossref]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, Phys. Rev. X 2, 031010 (2012).
[Crossref]

Science (2)

Y. Tang and A. E. Cohen, Science 332, 333 (2011).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. von Linden, and M. Wegener, Science 325, 1513 (2009).
[Crossref]

Other (1)

N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the model plasmonic meta-molecule. The arm-length L of the L-shape can be varied for a parametric study. (b) Exemplary tilted-view SEM image of a fabricated plasmonic meta-molecule array. Inset of (b): zoom-in tilted-view SEM image of one unit cell consisting of four plasmonic meta-molecules arranged in C 4 symmetry. The false color is superimposed to the SEM image. Scale bar of inset: 200 nm.
Fig. 2.
Fig. 2. Optical properties of chiral plasmonic meta-molecules composed of meta-atoms of distinct shapes. Upper panel, plasmonic resonances of individual meta-atoms. Left column, experimental results; right column, numerical simulations. Insets of upper-left panel: SEM images of individual plasmonic meta-atoms. Scale bar of inset: 100 nm. Colored frames around the SEM images correspond to the colors of spectra shown and apply to both experiments and simulations. Insets of upper-right panel: simulated charge distributions at plasmon resonances of the disk and of the L-shape with L = 200    nm . Lower panel, chiral optical response of plasmonic meta-molecules constructed from coupled disk and L-shapes with an arm length of 100 (red), 150 (blue), and 200 (green) nm. The curves are vertically displaced for clarity. Insets of lower-right panel: simulated charge distributions at corresponding CD features for the case of L = 200    nm . Middle column, SEM images of corresponding plasmonic meta-molecules. Scale bar: 200 nm.
Fig. 3.
Fig. 3. (a) Schematic of a plasmonic meta-molecule consisting of three disks on the lower layer and one L-shaped particle on the upper layer. (b) Exemplary tilted-view SEM image of a plasmonic meta-molecule array with α = 180 ° . Scale bar: 200 nm.
Fig. 4.
Fig. 4. Demonstration of spectral tunability of chiral optical response by rotating the L-shape. Left column, experimental results by FTIR measurement; right column, numerical simulations. The curves are vertically displaced for clarity. Middle column, SEM images of plasmonic meta-molecules with rotation angle α of L-shape to be 0 and 180° (solid and dotted green curves), 45 and 315° (solid and dotted blue curves), 90 and 270° (solid and dotted red curves), and 135 and 225° (solid and dotted purple curves). Scale bar: 200 nm. Solid and dotted color frames around the SEM images correspond to the spectra shown and apply to both experiments and simulations.

Metrics