Abstract

With two sets of standing-wave fields built in a thermal rubidium vapor cell, we have established a controllable photonic crystal with periodic gain in a coherently prepared N-type four-level atomic configuration. First, the photonic lattice constructed by a resonant standing-wave coupling field results in a spatially modulated susceptibility and makes the signal field diffract in a discrete manner under the condition of electromagnetically induced transparency. Then, with the addition of the standing-wave pump field, the N-type atomic medium can induce a periodic Raman gain on the signal field, which can be effectively controlled by tuning the pertinent atomic parameters. The experimental demonstration of such a real-time reconfigurable photonic crystal structure with periodic Raman gain can pave the way for realizing desired applications predicted in the gain-modulated periodic optical systems.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of diffraction pattern in two-dimensional optically induced atomic lattice

Jinpeng Yuan, Chaohua Wu, Lirong Wang, Gang Chen, and Suotang Jia
Opt. Lett. 44(17) 4123-4126 (2019)

Micro-lensing-induced line shapes in a single-mode cold-atom–hollow-core-fiber interface

Mohammad Noaman, Maria Langbecker, and Patrick Windpassinger
Opt. Lett. 43(16) 3925-3928 (2018)

Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap

Zhaoyang Zhang, Danmeng Ma, Yiqi Zhang, Mingtao Cao, Zhongfeng Xu, and Yanpeng Zhang
Opt. Lett. 42(6) 1059-1062 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription