Abstract

We numerically demonstrate that gold dimers coupled with a silicon-on-insulator waveguide enable an efficient plasmonic tweezing of dielectric nanobeads, having radii down to 50 nm. By means of a rigorous 3D finite difference time domain and simplified gradient force-based calculations, we investigate the effect of the gap size involved on the tweezing action. We also demonstrate that the scattering force helps the trapping in the proximity of the dimer, thanks to the establishment of light vortices.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su
Opt. Express 24(5) 4801-4811 (2016)

Vertically-oriented nanoparticle dimer based on focused plasmonic trapping

Zhe Shen, Lei Su, and Yao-chun Shen
Opt. Express 24(14) 16052-16065 (2016)

Integrated plasmonic nanotweezers for nanoparticle manipulation

Giovanni Magno, Aurore Ecarnot, Christophe Pin, Vy Yam, Philippe Gogol, Robert Mégy, Benoit Cluzel, and Béatrice Dagens
Opt. Lett. 41(16) 3679-3682 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription