Abstract

We present fiber Bragg gratings (FBGs) fabricated using adaptive optics aberration compensation for the first time to the best of our knowledge. The FBGs are fabricated with a femtosecond laser by the point-by-point method using an air-based objective lens, removing the requirement for immersion oil or ferrules. We demonstrate a general phase correction strategy that can be used for accurate fabrication at any point in the fiber cross-section. We also demonstrate a beam-shaping approach that nullifies the aberration when focused inside a central fiber core. Both strategies give results which are in excellent agreement with coupled-mode theory. An extremely low wavelength polarization sensitivity of 4 pm is reported.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses

Alexey Wolf, Alexandr Dostovalov, Kirill Bronnikov, and Sergey Babin
Opt. Express 27(10) 13978-13990 (2019)

Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses

Jörg Burgmeier, Christian Waltermann, Günter Flachenecker, and Wolfgang Schade
Opt. Lett. 39(3) 540-543 (2014)

Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating

Erden Ertorer, Moez Haque, Jianzhao Li, and Peter R. Herman
Opt. Express 26(7) 9323-9331 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, Sensors 12, 1898 (2012).
    [Crossref]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [Crossref]
  3. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [Crossref]
  4. C. W. Smelser, S. J. Mihailov, and D. Grobnic, Opt. Express 13, 5377 (2005).
    [Crossref]
  5. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, Opt. Express 15, 18318 (2007).
    [Crossref]
  6. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
    [Crossref]
  7. R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, Opt. Lett. 38, 1918 (2013).
    [Crossref]
  8. E. Ertorer, M. Haque, J. Li, and P. R. Herman, Opt. Express 26, 9323 (2018).
    [Crossref]
  9. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, Opt. Express 18, 19844 (2010).
    [Crossref]
  10. Y. Chen, Y. Lai, and M. W. O. Cheong, Appl. Opt. 55, 5575 (2016).
    [Crossref]
  11. T. A. Goebel, C. Voigtländer, R. G. Krämer, D. Richter, M. Heck, M. P. Siems, C. Matzdorf, C. Reinlein, M. Appelfelder, T. Schreiber, J. U. Thomas, A. Tünnermann, and S. Nolte, Opt. Lett. 42, 4215 (2017).
    [Crossref]
  12. C. Voigtländer, R. G. Krämer, T. A. Goebel, D. Richter, and S. Nolte, Opt. Lett. 41, 17 (2016).
    [Crossref]
  13. M. Schwertner, M. J. Booth, and T. Wilson, J. Microsc. 215, 271 (2004).
    [Crossref]
  14. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, Opt. Lett. 28, 55 (2003).
    [Crossref]
  15. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, Opt. Express 13, 5676 (2005).
    [Crossref]
  16. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
    [Crossref]
  17. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, Opt. Lett. 37, 470 (2012).
    [Crossref]
  18. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [Crossref]
  19. A. Donko, M. Beresna, Y. Jung, J. Hayes, and D. J. Richardson, Opt. Express 26, 2039 (2018).
    [Crossref]
  20. K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, Opt. Express 21, 24076 (2013).
    [Crossref]
  21. J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [Crossref]
  22. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, Opt. Lett. 35, 1443 (2010).
    [Crossref]

2018 (2)

2017 (1)

2016 (2)

2013 (2)

2012 (2)

2010 (3)

2007 (1)

2005 (2)

2004 (1)

M. Schwertner, M. J. Booth, and T. Wilson, J. Microsc. 215, 271 (2004).
[Crossref]

2003 (1)

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

1996 (1)

1993 (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

1989 (1)

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

Ams, M.

Appelfelder, M.

Atkin, D. M.

Bennion, I.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, Opt. Express 15, 18318 (2007).
[Crossref]

Beresna, M.

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

Birks, T. A.

Booth, M. J.

Canning, J.

Chen, K. P.

Chen, Y.

Cheng, Y.

Cheong, M. W. O.

Donko, A.

Dubov, M.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

Ertorer, E.

Glenn, W. H.

Goebel, T. A.

Grobnic, D.

Haque, M.

Hayes, J.

Heck, M.

Herman, P. R.

Hill, K. O.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

Jesacher, A.

Jewart, C. M.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

Jovanovic, N.

Jung, Y.

Kawachi, M.

Knight, J. C.

Krämer, R. G.

Lai, Y.

Langford, N. K.

Lee, K. K. C.

Li, J.

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

Mariampillai, A.

Marshall, G. D.

Masuda, M.

Matzdorf, C.

Meltz, G.

Metcalf, B. J.

Mezentsev, V. K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

Midorikawa, K.

Mihailov, S. J.

Morey, W. W.

Mou, C.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

Nolte, S.

Reinlein, C.

Richardson, D. J.

Richter, D.

Russell, P. St.J.

Salter, P. S.

Schreiber, T.

Schwertner, M.

M. Schwertner, M. J. Booth, and T. Wilson, J. Microsc. 215, 271 (2004).
[Crossref]

Shihoyama, K.

Siems, M. P.

Simmonds, R. D.

Smelser, C. W.

Spence, D. J.

Spring, J. B.

Standish, B. A.

Steel, M. J.

Sugden, K.

Sugioka, K.

Thomas, J. U.

Thomas-Peter, N.

Toyoda, K.

Tünnermann, A.

Voigtländer, C.

Walmsley, I. A.

Wang, Q.

Williams, R. J.

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, J. Microsc. 215, 271 (2004).
[Crossref]

Withford, M. J.

Yang, V. X. D.

Zhang, L.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

Zhou, K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, Opt. Express 15, 18318 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[Crossref]

Electron. Lett. (1)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Electron. Lett. 29, 1668 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, IEEE Photon. Technol. Lett. 22, 1190 (2010).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

J. Microsc. (1)

M. Schwertner, M. J. Booth, and T. Wilson, J. Microsc. 215, 271 (2004).
[Crossref]

Opt. Express (7)

Opt. Lett. (8)

Sensors (1)

S. J. Mihailov, Sensors 12, 1898 (2012).
[Crossref]

Supplementary Material (2)

NameDescription
» Data File 1       Underlying data for Figure 4.
» Data File 2       Underlying data for Figure 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Diagrammatic illustration of the aberration incurred when focusing inside an optical fiber. (a) Ray paths of writing beam for axial plane (z-x) and radial plane (z-y) of optical fiber. Refraction at the fiber interface causes a focal splitting between components of rays propagating parallel and perpendicular to the fiber axis. (b) By considering a cross-section through the fiber at an angle ϕ to the fiber axis, it is possible to determine the pupil phase aberration that needs to be corrected to focus inside the fiber core, as shown in (c) for a typical SMF with a 0.5 NA air objective.
Fig. 2.
Fig. 2. Illumination of the objective lens pupil with a slit intensity distribution as shown in (a) reduces the dimensionality and can effectively remove the phase aberration. (b) The phase profile plotted along each of the slits indicated in (a) as well as the theoretical defocus. (c) Schematic of the focal intensity distribution in the fiber core with different illumination profiles of the objective lens.
Fig. 3.
Fig. 3. Microscope images of structures fabricated inside SMF. A series of 5 points, each fabricated by a single pulse at 5 μm spacing with (a) and without (b) aberration correction. The laser was incident along the z direction. FBGs fabricated with (c) and without (d) correction.
Fig. 4.
Fig. 4. Measured and theoretical reflection spectra for fabricated FBGs with 3 mm length, (ol-43-24-5993-i001 red) experimental measurement, (ol-43-24-5993-i002 blue) fit to coupled-mode theory, (a) using aberration correction (b) using beam-shaping, for coupling coefficent, κ and reflectivity R, (i) κ=1  cm1, R=8.5%, (ii) κ=2  cm1, R=28.8% and (iii) κ=3  cm1, R=51.3%. See Data File 1 for the underlying data.
Fig. 5.
Fig. 5. Measured polarization sensitivity of FBGs, fabricated with (a) the aberration correction technique and (b) the beam-shaping technique. The two lines represent the two extreme polarization states. See Data File 2 for the underlying data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψ=2πΔnRλ1ρ2NA2cos2ϕ,
ψ2πΔnRλ(1+ρ2NA24+ρ2NA2cos2ϕ4)=aZ00+bZ20+cZ22,

Metrics