Abstract

Hybrid qubits have recently drawn intense attention in quantum computing. We here propose a method to implement a universal controlled-phase gate of two hybrid qubits via two three-dimensional (3D) microwave cavities coupled to a superconducting flux qutrit. For the gate considered here, the control qubit is a microwave photonic qubit (particle-like qubit), whose two logic states are encoded by the vacuum state and the single-photon state of a cavity, while the target qubit is a cat-state qubit (wave-like qubit), whose two logic states are encoded by the two orthogonal cat states of the other cavity. During the gate operation, the qutrit remains in the ground state; therefore, decoherence from the qutrit is greatly suppressed. The gate realization is quite simple, because only a single basic operation is employed and neither classical pulse nor measurement is used. Our numerical simulations demonstrate that with current circuit quantum electrodynamics technology, this gate can be realized with a high fidelity. The generality of this proposal allows implementing the proposed gate in a wide range of physical systems, such as two 1D or 3D microwave or optical cavities coupled to a natural or artificial three-level atom. Finally, this proposal can be applied to create a novel entangled state between a particle-like photonic qubit and a wave-like cat-state qubit.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications

Tong Liu, Bao-Qing Guo, Chang-Shui Yu, and Wei-Ning Zhang
Opt. Express 26(4) 4498-4511 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription