Abstract

A key requirement for femtosecond spectroscopy measurements is to compress the laser pulse to its transform-limited duration. In particular, for few-cycle laser pulses, the compression process is time-consuming using conventional algorithms that converge statistically. Here we show that machine learning can accelerate the process of pulse compression: we have developed an adaptive neural-network algorithm to control a deformable-mirror–based pulse shaper that converges 100× faster than a standard evolutionary algorithm.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle reduction using an artificial neural network algorithm

Mohammad R. N. Avanaki, P. Philippe Laissue, Tae Joong Eom, Adrian G. Podoleanu, and Ali Hojjatoleslami
Appl. Opt. 52(21) 5050-5057 (2013)

Dynamic-range compression scheme for digital hologram using a deep neural network

Tomoyoshi Shimobaba, David Blinder, Michal Makowski, Peter Schelkens, Yota Yamamoto, Ikuo Hoshi, Takashi Nishitsuji, Yutaka Endo, Takashi Kakue, and Tomoyoshi Ito
Opt. Lett. 44(12) 3038-3041 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription