Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Femtosecond pulse compression using a neural-network algorithm

Abstract

A key requirement for femtosecond spectroscopy measurements is to compress the laser pulse to its transform-limited duration. In particular, for few-cycle laser pulses, the compression process is time-consuming using conventional algorithms that converge statistically. Here we show that machine learning can accelerate the process of pulse compression: we have developed an adaptive neural-network algorithm to control a deformable-mirror–based pulse shaper that converges 100× faster than a standard evolutionary algorithm.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Snapshot temporal compressive microscopy using an iterative algorithm with untrained neural networks

Mu Qiao, Xuan Liu, and Xin Yuan
Opt. Lett. 46(8) 1888-1891 (2021)

Taming femtosecond laser filamentation and supercontinuum generation in liquids using neural networks

Panagiotis Konstantakis, Paul E. Dufour, Maria Manousidaki, Anastasios D. Koulouklidis, and Stelios Tzortzakis
Opt. Lett. 47(21) 5445-5448 (2022)

Dynamic-range compression scheme for digital hologram using a deep neural network

Tomoyoshi Shimobaba, David Blinder, Michal Makowski, Peter Schelkens, Yota Yamamoto, Ikuo Hoshi, Takashi Nishitsuji, Yutaka Endo, Takashi Kakue, and Tomoyoshi Ito
Opt. Lett. 44(12) 3038-3041 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.