Abstract

We report, to the best of our knowledge, the first employment of a self-injection locking scheme for the demonstration of a tunable InGaN/GaN semiconductor laser diode. We have achieved a 7.11 nm (521.10–528.21 nm) tunability in a green color with different injection currents and temperatures. The system exhibited mode spectral linewidth as narrow as 69  pm and a side mode suppression ratio as high as 28  dB, with a maximum optical power of 16.7  mW. In the entire tuning window, extending beyond 520 nm, a spectral linewidth of 100  pm, high power, and stable performance were consistently achieved, making this, to the best of our knowledge, the first-of-its-kind compact tunable laser system attractive for spectroscopy, imaging, sensing systems, and visible light communication.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Green high-power tunable external-cavity GaN diode laser at 515  nm

Mingjun Chi, Ole Bjarlin Jensen, and Paul Michael Petersen
Opt. Lett. 41(18) 4154-4157 (2016)

Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity

Fang Wei, Fei Yang, Xi Zhang, Dan Xu, Meng Ding, Li Zhang, Dijun Chen, Haiwen Cai, Zujie Fang, and Gu Xijia
Opt. Express 24(15) 17406-17415 (2016)

Dynamics of a green high-power tunable external-cavity broad-area GaN diode laser

Mingjun Chi, Ole B. Jensen, Anders K. Hansen, and Paul M. Petersen
J. Opt. Soc. Am. B 35(4) 667-671 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Miyazaki and T. Kobayahsi, Photonics 4, 32 (2017).
    [Crossref]
  2. J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
    [Crossref]
  3. D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
    [Crossref]
  4. M. Chi, O. B. Jensen, and P. M. Petersen, Opt. Lett. 41, 4154 (2016).
    [Crossref]
  5. Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
    [Crossref]
  6. M. Chi, O. B. Jensen, and P. M. Petersen, Appl. Opt. 55, 2263 (2016).
    [Crossref]
  7. N. Ruhnke, A. Müller, B. Eppich, M. Maiwald, B. Sumpf, G. Erbert, and G. Tränkle, Opt. Lett. 39, 3794 (2014).
    [Crossref]
  8. T. Laurila, T. Joutsenoja, R. Hernberg, and M. Kuittinen, Appl. Opt. 41, 5632 (2002).
    [Crossref]
  9. D. J. Lonsdale, A. P. Willis, and T. A. King, Meas. Sci. Technol. 13, 488 (2002).
  10. L. Hildebrandt, R. Knispel, S. Stry, J. R. Sacher, and F. Schael, Appl. Opt. 42, 2110 (2003).
    [Crossref]
  11. J. Hult, I. S. Burns, and C. F. Kaminski, Appl. Opt. 44, 3675 (2005).
    [Crossref]
  12. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001).
    [Crossref]
  13. W. Hong, “Design and characterization of a Littrow configuration external cavity diode laser,” California Institute of Technology, 2005, http://web.mit.edu/rsi/compendium/edit2004/Final/hong-wenxian-caltech-both.pdf .
  14. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

2017 (2)

J. Miyazaki and T. Kobayahsi, Photonics 4, 32 (2017).
[Crossref]

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

2016 (4)

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
[Crossref]

M. Chi, O. B. Jensen, and P. M. Petersen, Appl. Opt. 55, 2263 (2016).
[Crossref]

M. Chi, O. B. Jensen, and P. M. Petersen, Opt. Lett. 41, 4154 (2016).
[Crossref]

2014 (1)

2005 (1)

2003 (1)

2002 (2)

T. Laurila, T. Joutsenoja, R. Hernberg, and M. Kuittinen, Appl. Opt. 41, 5632 (2002).
[Crossref]

D. J. Lonsdale, A. P. Willis, and T. A. King, Meas. Sci. Technol. 13, 488 (2002).

2001 (1)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001).
[Crossref]

Blume, G.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Burns, I. S.

Chen, H.-Z.

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

Chen, Y.-H.

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

Chi, M.

Chui, H.-C.

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Eppich, B.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

N. Ruhnke, A. Müller, B. Eppich, M. Maiwald, B. Sumpf, G. Erbert, and G. Tränkle, Opt. Lett. 39, 3794 (2014).
[Crossref]

Erbert, G.

Feise, D.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001).
[Crossref]

Hernberg, R.

Hildebrandt, L.

Hofmann, J.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Hult, J.

Jedrzejczyk, D.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Jensen, O. B.

Joutsenoja, T.

Kalashnikov, D. A.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
[Crossref]

Kaminski, C. F.

King, T. A.

D. J. Lonsdale, A. P. Willis, and T. A. King, Meas. Sci. Technol. 13, 488 (2002).

Knispel, R.

Kobayahsi, T.

J. Miyazaki and T. Kobayahsi, Photonics 4, 32 (2017).
[Crossref]

Kreutzmann, S.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Krivitsky, L. A.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
[Crossref]

Kuittinen, M.

Kulik, S. P.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
[Crossref]

Laurila, T.

Lin, W.-C.

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

Lonsdale, D. J.

D. J. Lonsdale, A. P. Willis, and T. A. King, Meas. Sci. Technol. 13, 488 (2002).

Maiwald, M.

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Miyazaki, J.

J. Miyazaki and T. Kobayahsi, Photonics 4, 32 (2017).
[Crossref]

Müller, A.

Paschke, K.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Paterova, A. V.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
[Crossref]

Petersen, P. M.

Ruhnke, N.

Sacher, J. R.

Sahm, A.

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Schael, F.

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001).
[Crossref]

Shy, J.-T.

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

Stry, S.

Sumpf, B.

Tränkle, G.

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001).
[Crossref]

Willis, A. P.

D. J. Lonsdale, A. P. Willis, and T. A. King, Meas. Sci. Technol. 13, 488 (2002).

Appl. Opt. (4)

IEEE Photon. J. (1)

Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, and H.-C. Chui, IEEE Photon. J. 9, 1507207 (2017).
[Crossref]

Meas. Sci. Technol. (1)

D. J. Lonsdale, A. P. Willis, and T. A. King, Meas. Sci. Technol. 13, 488 (2002).

Nat. Photonics (1)

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, Nat. Photonics 10, 98 (2016).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

J. Hofmann, G. Blume, D. Jedrzejczyk, B. Eppich, D. Feise, S. Kreutzmann, A. Sahm, and K. Paschke, Opt. Rev. 23, 141 (2016).
[Crossref]

Photonics (1)

J. Miyazaki and T. Kobayahsi, Photonics 4, 32 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001).
[Crossref]

Other (2)

W. Hong, “Design and characterization of a Littrow configuration external cavity diode laser,” California Institute of Technology, 2005, http://web.mit.edu/rsi/compendium/edit2004/Final/hong-wenxian-caltech-both.pdf .

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Block diagram of a self-injection locked tunable laser system. A laboratory photograph is shown in the inset.
Fig. 2.
Fig. 2. (a) L-I characteristics of a self-injection locked tunable laser system at 20°C and 40°C. The free-running characteristics are also shown for comparison purposes. (b) Single longitudinal lasing mode operation at 36 (20) and 47 (40) mA (°C) injection currents.
Fig. 3.
Fig. 3. Superimposed lasing spectra demonstrating the tunability of a green laser diode at 20°C and at (a) a low injection current of 36 mA and (b) a high injection current of 160 mA.
Fig. 4.
Fig. 4. (a) Comparison of the output optical power under the free-running and self-injection locked cases with an inset showing a free-running and locked mode at 160 mA. (b) Measured spectral linewidth and SMSR of the tunable locked modes along the tunable wavelengths at 36 mA (square symbols) and 160 mA (circle symbols) injection currents. The external cavity is fixed at 28 cm and temperature at 20°C.
Fig. 5.
Fig. 5. (a) Collective tuning range of the system at low injection, 36 mA for 20°C and 47 mA for 40°C, and high injection, 160 mA at 20°C and 40°C. The inset shows the individual contribution of low (square symbols) and high (circle symbols) injection current towards the achieved tunability. (b) Measured spectral linewidth and SMSR across the collective tuning span of 5.91 nm for low (square symbols) and high (circle symbols) injection currents at 40°C. The external cavity is fixed at 28 cm.
Fig. 6.
Fig. 6. (a) Collective tuning range of the system at low injection, 36 mA, and high injection, 160 mA, at two different external cavity lengths, and at 20°C. The inset shows the individual contributions of low (square symbols) and high (circle symbols) injection currents towards the achieved tunability. (b) Measured spectral linewidth and SMSR across the collective tuning span of 5.55 nm for low (square symbols) and high (circle symbols) injection currents at 12 cm external cavity.
Fig. 7.
Fig. 7. Short-term stability of the self-injection locked tunable laser system showing the stability of (a) the total integrated and peak optical power (measured at “L3”) and (b) the peak wavelength and SMSR, of a 522.86 nm locked mode, at a 36 mA injection current, 20°C temperature, and 28 cm external cavity.

Metrics