Abstract

A rapid and cost-effective method for the fabrication of nanogap-rich structures is demonstrated in this Letter. The method utilizes the Marangoni convection around an optothermal surface bubble inside a liquid droplet with a nanoliter volume. The liquid droplet containing metallic nanoparticles reduces the sample consumption and confines the liquid flow. The optothermal surface bubble creates a strong convective flow that allows for the rapid deposition of the metallic nanoparticles to form nanogap-rich structures on any substrate under ambient conditions. This method will enable a broad range of applications such as biosensing, environmental analysis, and nonlinear optics.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates

Hongbing Cai, YuKun Wu, Yanmeng Dai, Nan Pan, Yangchao Tian, Yi Luo, and Xiaoping Wang
Opt. Express 24(18) 20808-20815 (2016)

Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array

Liangping Xia, Zheng Yang, Shaoyun Yin, Wenrui Guo, Shuhong Li, Wanyi Xie, Deping Huang, Qiling Deng, Haofei Shi, Hongliang Cui, and Chunlei Du
Opt. Express 21(9) 11349-11355 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. A. Atwater, Sci. Am. 296, 56 (2007).
    [Crossref]
  3. A. Polman, Science 322, 868 (2008).
    [Crossref]
  4. S. Schlücker, Angew. Chem. Int. Ed. 53, 4756 (2014).
    [Crossref]
  5. D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
    [Crossref]
  6. M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
    [Crossref]
  7. J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano 9, 10545 (2015).
    [Crossref]
  8. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
    [Crossref]
  9. G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).
    [Crossref]
  10. Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
    [Crossref]
  11. C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
    [Crossref]
  12. Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 14, 1572 (2014).
    [Crossref]
  13. Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 15, 581 (2015).
    [Crossref]
  14. Y. Xie and C. Zhao, Nanoscale 9, 6622 (2017).
    [Crossref]
  15. K. Setoura, S. Ito, and H. Miyasaka, Nanoscale 9, 719 (2017).
    [Crossref]
  16. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
    [Crossref]
  17. L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
    [Crossref]
  18. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
    [Crossref]
  19. B. J. Fischer, Langmuir 18, 60 (2002).
    [Crossref]
  20. X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
    [Crossref]
  21. M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
    [Crossref]
  22. J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
    [Crossref]
  23. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
    [Crossref]
  24. H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).
    [Crossref]
  25. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
    [Crossref]

2017 (2)

Y. Xie and C. Zhao, Nanoscale 9, 6622 (2017).
[Crossref]

K. Setoura, S. Ito, and H. Miyasaka, Nanoscale 9, 719 (2017).
[Crossref]

2016 (3)

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

2015 (2)

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 15, 581 (2015).
[Crossref]

J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano 9, 10545 (2015).
[Crossref]

2014 (5)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
[Crossref]

S. Schlücker, Angew. Chem. Int. Ed. 53, 4756 (2014).
[Crossref]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 14, 1572 (2014).
[Crossref]

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

2013 (2)

G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

2012 (1)

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[Crossref]

2011 (3)

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

2008 (1)

A. Polman, Science 322, 868 (2008).
[Crossref]

2007 (2)

H. A. Atwater, Sci. Am. 296, 56 (2007).
[Crossref]

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

2005 (1)

H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).
[Crossref]

2002 (1)

B. J. Fischer, Langmuir 18, 60 (2002).
[Crossref]

1997 (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Akinwande, D.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Atwater, H. A.

H. A. Atwater, Sci. Am. 296, 56 (2007).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
[Crossref]

G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).
[Crossref]

Baglia, M. L.

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

Bakajin, O.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Bell, S. E. J.

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Brennan, S.

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Brevet, P.-F.

J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano 9, 10545 (2015).
[Crossref]

Butet, J.

J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano 9, 10545 (2015).
[Crossref]

Cao, J.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

Cheng, L. J.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Cheung, M.

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Deegan, R. D.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Domingues, C.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

Dunn, A. K.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Dupont, T. F.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Eagleton, Z. E.

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

Fan, Q.

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 15, 581 (2015).
[Crossref]

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 14, 1572 (2014).
[Crossref]

Fischer, B. J.

B. J. Fischer, Langmuir 18, 60 (2002).
[Crossref]

Fujii, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Guo, F.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Haga, M.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Haselton, F. R.

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

Hu, H.

H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).
[Crossref]

Hu, W.

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 15, 581 (2015).
[Crossref]

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 14, 1572 (2014).
[Crossref]

Huang, T. J.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Huber, G.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Hwang, J.-H.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Ito, S.

K. Setoura, S. Ito, and H. Miyasaka, Nanoscale 9, 719 (2017).
[Crossref]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Kanaizuka, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[Crossref]

Kim, H.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Kim, P. G.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

Kobayashi, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Kong, X.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Kwon, S.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Larmour, I. A.

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Larson, R. G.

H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).
[Crossref]

LeDuff, P.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Lee, W. W. Y.

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Li, E.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Li, S.

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Li, W.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Lin, L.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Liu, H.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

Liu, Y.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Mai, J. D.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mao, Z.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Martin, O. J. F.

J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano 9, 10545 (2015).
[Crossref]

McCracken, J. N.

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Mernaugh, R. L.

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

Miyasaka, H.

K. Setoura, S. Ito, and H. Miyasaka, Nanoscale 9, 719 (2017).
[Crossref]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
[Crossref]

Muneyuki, E.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Nagel, S. R.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Ohta, A. T.

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 15, 581 (2015).
[Crossref]

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 14, 1572 (2014).
[Crossref]

Peng, X.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Perillo, E. P.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
[Crossref]

Polman, A.

A. Polman, Science 322, 868 (2008).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).
[Crossref]

Rajeeva, B. B.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
[Crossref]

Ristenpart, W. D.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

Rorrer, G. L.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Rufo, J.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Schlücker, S.

S. Schlücker, Angew. Chem. Int. Ed. 53, 4756 (2014).
[Crossref]

Setoura, K.

K. Setoura, S. Ito, and H. Miyasaka, Nanoscale 9, 719 (2017).
[Crossref]

Stone, H. A.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Tan, H.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Toyabe, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

Trantum, J. R.

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

Wan, J.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

Wang, A. X.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Wang, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

Wang, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

Witten, T. A.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Xi, Y.

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Xie, Y.

Y. Xie and C. Zhao, Nanoscale 9, 6622 (2017).
[Crossref]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Yang, S.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Yogeesh, M. N.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[Crossref]

Zhao, C.

Y. Xie and C. Zhao, Nanoscale 9, 6622 (2017).
[Crossref]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Zhao, Y.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

Zheng, Y.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

Zhu, C.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

Zhu, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

ACS Nano (1)

J. Butet, P.-F. Brevet, and O. J. F. Martin, ACS Nano 9, 10545 (2015).
[Crossref]

Anal. Chem. (1)

M. Cheung, W. W. Y. Lee, J. N. McCracken, I. A. Larmour, S. Brennan, and S. E. J. Bell, Anal. Chem. 88, 4541 (2016).
[Crossref]

Angew. Chem. Int. Ed. (1)

S. Schlücker, Angew. Chem. Int. Ed. 53, 4756 (2014).
[Crossref]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, J. Phys. Chem. C 118, 4890 (2014).
[Crossref]

Lab Chip (6)

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, Lab Chip 11, 3816 (2011).
[Crossref]

J. R. Trantum, M. L. Baglia, Z. E. Eagleton, R. L. Mernaugh, and F. R. Haselton, Lab Chip 14, 315 (2014).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, Lab Chip 13, 1772 (2013).
[Crossref]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, Lab Chip 14, 384 (2014).
[Crossref]

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 14, 1572 (2014).
[Crossref]

Q. Fan, W. Hu, and A. T. Ohta, Lab Chip 15, 581 (2015).
[Crossref]

Langmuir (3)

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, Langmuir 27, 8605 (2011).
[Crossref]

B. J. Fischer, Langmuir 18, 60 (2002).
[Crossref]

H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).
[Crossref]

Laser Photon. Rev. (1)

G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).
[Crossref]

Nano Lett. (1)

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, Nano Lett. 16, 701 (2016).
[Crossref]

Nanoscale (3)

X. Kong, Y. Xi, P. LeDuff, E. Li, Y. Liu, L. J. Cheng, G. L. Rorrer, H. Tan, and A. X. Wang, Nanoscale 8, 17285 (2016).
[Crossref]

Y. Xie and C. Zhao, Nanoscale 9, 6622 (2017).
[Crossref]

K. Setoura, S. Ito, and H. Miyasaka, Nanoscale 9, 719 (2017).
[Crossref]

Nat. Nanotechnol. (1)

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[Crossref]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[Crossref]

Nature (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
[Crossref]

Phys. Rev. Lett. (1)

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
[Crossref]

Sci. Am. (1)

H. A. Atwater, Sci. Am. 296, 56 (2007).
[Crossref]

Science (1)

A. Polman, Science 322, 868 (2008).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Supplementary Material (1)

NameDescription
» Visualization 1       Droplet size changes due to surface bubble generation

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. L, lens; BS, beam splitter; DM, dichroic mirror; O, objective lens; TL, tube lens; CCD, charge-coupled device; ND, variable neutral density filter; PM, power meter. The inset shows the optical image of an optothermal surface bubble inside a droplet.

Fig. 2.
Fig. 2.

Optical image of a nanoliter droplet (a) before and (b) after the generation of an optothermal bubble inside it (see Visualization 1).

Fig. 3.
Fig. 3.

(a) Schematic of the flow pattern around a surface bubble inside a droplet. (b) Optical image of nanogap-rich structures formed on a gold-coated cover glass. (c) The SEM image of the corresponding area marked in (b) with a white box. (d) Schematic of the flow pattern inside a sessile droplet. (e) Optical image of the final pattern formed on the same substrate due to the coffee-ring effect. (f) The SEM image of the corresponding area marked in (e) with a white box.

Fig. 4.
Fig. 4.

Size of the deposited pattern as a function of laser intensity. The solid line is a linear fit of the experimental data (shown as circles with error bars). The insets show the optical images of two nanogap-rich plasmonic nanostructures fabricated under the same laser intensity.

Metrics