Abstract

Different approaches to implement unipolar Golay coding in Brillouin optical time-domain analysis based on a differential pulse pair (DPP) are investigated. The analysis points out that dedicated post-processing procedures must be followed to secure the sharp spatial resolution associated with the DPP method. Moreover, a novel hybrid Golay–DPP coding scheme is proposed, offering 1.5 dB signal-to-noise ratio improvement with respect to traditional unipolar Golay coding, while halving the measurement time, constituting a 3 dB overall coding gain enhancement. Proof-of-concept experiments validate the proposed technique, demonstrating a 50 cm spatial resolution over a 10.164 km long sensing fiber with a frequency uncertainty of 1.4 MHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers

Zhisheng Yang, Zonglei Li, Simon Zaslawski, Luc Thévenaz, and Marcelo A. Soto
Opt. Express 26(13) 16505-16523 (2018)

Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale
Opt. Lett. 38(20) 4162-4165 (2013)

Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors

Zhisheng Yang, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 24(1) 586-597 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [Crossref]
  2. M. A. Soto and L. Thévenaz, Opt. Express 21, 31347 (2013).
    [Crossref]
  3. M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, Proc. SPIE 10323, 103239J (2017).
    [Crossref]
  4. W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008).
    [Crossref]
  5. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, J. Lightwave Technol. 28, 2993 (2010).
    [Crossref]
  6. M. Alem, M. A. Soto, and L. Thévenaz, Opt. Express 23, 29514 (2015).
    [Crossref]
  7. A. Domínguez-López, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, Opt. Express 24, 10188 (2016).
    [Crossref]
  8. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, Opt. Lett. 35, 259 (2010).
    [Crossref]
  9. M. A. Soto, S. Le Floch, and L. Thévenaz, Opt. Express 21, 16390 (2013).
    [Crossref]
  10. Z. Yang, M. A. Soto, and L. Thévenaz, Opt. Express 24, 586 (2016).
    [Crossref]
  11. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, Opt. Express 20, 6860 (2012).
    [Crossref]
  12. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
    [Crossref]
  13. Z. Yang, Z. Li, S. Zaslawski, L. Thévenaz, and M. A. Soto, Opt. Express 26, 16505 (2018).
    [Crossref]
  14. F. Wang, C. Zhu, C. Cao, and X. Zhang, Opt. Express 25, 3504 (2017).
    [Crossref]
  15. A. Minardo, R. Bernini, and L. Zeni, Opt. Express 19, 19233 (2011).
    [Crossref]

2018 (1)

2017 (2)

F. Wang, C. Zhu, C. Cao, and X. Zhang, Opt. Express 25, 3504 (2017).
[Crossref]

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, Proc. SPIE 10323, 103239J (2017).
[Crossref]

2016 (2)

2015 (1)

2013 (2)

2012 (1)

2011 (1)

2010 (2)

2008 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Alem, M.

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, Proc. SPIE 10323, 103239J (2017).
[Crossref]

M. Alem, M. A. Soto, and L. Thévenaz, Opt. Express 23, 29514 (2015).
[Crossref]

Angulo-Vinuesa, X.

Bao, X.

Bernini, R.

Beugnot, J.-C.

Bolognini, G.

Cao, C.

Chen, L.

Di Pasquale, F.

Domínguez-López, A.

Foaleng, S. M.

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

González-Herráez, M.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Le Floch, S.

Li, W.

Li, Y.

Li, Z.

Martín-López, S.

Minardo, A.

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Soto, M. A.

Taki, M.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Thévenaz, L.

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Tur, M.

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, Proc. SPIE 10323, 103239J (2017).
[Crossref]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, J. Lightwave Technol. 28, 2993 (2010).
[Crossref]

Wang, F.

Yang, Z.

Zaslawski, S.

Zeni, L.

Zhang, X.

Zhu, C.

J. Lightwave Technol. (3)

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, J. Lightwave Technol. 28, 2993 (2010).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, J. Lightwave Technol. 7, 24 (1989).
[Crossref]

Opt. Express (10)

Opt. Lett. (1)

Proc. SPIE (1)

M. Alem, M. A. Soto, M. Tur, and L. Thévenaz, Proc. SPIE 10323, 103239J (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Temporal shapes of (a) long-pulse, (b) short-pulse, (c) differential-pulse, and (d) hybrid-pulse Golay code sequences.
Fig. 2.
Fig. 2. Simulated Golay coding interrogating functions f L (long-pulse Golay sequences), f S (short-pulse Golay sequences), f C S DPP (C-S method), and f S C DPP (S-C method).
Fig. 3.
Fig. 3. Experimental setup. PG, pulse generator; OBF, optical bandpass filter; TOA, tunable optical attenuator.
Fig. 4.
Fig. 4. Experimentally obtained Golay code interrogating functions for long-pulse, short-pulse and hybrid sequences.
Fig. 5.
Fig. 5. Measured BGS at 1 km distance using long-pulse and short-pulse sequences and after decoding using an S-C method, C-S method, and the proposed hybrid coding scheme.
Fig. 6.
Fig. 6. (a) BFS around hotspot when using long-pulse Golay sequences, short-pulse Golay sequences, and DPP-pulses resulting after decoding with the C-S method. (b) Comparison of the BFS profile around hotspot obtained when using classical DPP-BOTDA with C-S and S-C decoding.
Fig. 7.
Fig. 7. (a) Decoded Brillouin gain traces at 10.78 GHz. (b) BFS around the hotspot section.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ R A n DPP = R A n L R A n S = A n DPP h ( k ) R B n DPP = R B n L R B n S = B n DPP h ( k ) n = 1 , 2 ,
{ A n DPP = A n L A n S B n DPP = B n L B n S n = 1 , 2 .
[ ( R A 1 DPP R A 2 DPP ) * ( A 1 DPP A 2 DPP ) + ( R B 1 DPP R B 2 DPP ) * ( B 1 DPP B 2 DPP ) ] / [ 2 ( N p L N p S ) L ] = h ( k ) [ ( A 1 DPP A 2 DPP ) * ( A 1 DPP A 2 DPP ) + ( B 1 DPP B 2 DPP ) * ( B 1 DPP B 2 DPP ) ] / [ 2 ( N p L N p S ) L ] = h ( k ) f S C DPP ,
{ A 1 h = A 1 L + A 2 S A 2 h = A 2 L + A 1 S and { B 1 h = B 1 L + B 2 S B 2 h = B 2 L + B 1 S .
[ ( R A 1 h R A 2 h ) * ( A 1 h A 2 h ) + ( R B 1 h R B 2 h ) * ( B 1 h B 2 h ) ] / [ 2 ( N p L N p S ) L ] = h ( k ) [ ( A 1 h A 2 h ) * ( A 1 h A 2 h ) + ( B 1 h B 2 h ) * ( B 1 h B 2 h ) ] / [ 2 ( N p L N p S ) L ] = h ( k ) f hybrid DPP ,