Abstract

We present a flexoelectro-optic liquid crystal (LC) analog phase modulator with >2π phase range at a 1 kHz switching frequency. The chiral nematic LC mixture consists of the bimesogen CBC7CB with chiral dopant R5011, aligned in the uniform lying helix mode. The mixture exhibits >±π/4 rotation of the optic axis for a drive voltage of ±21.5  V (E=±4.5  Vμm1). The rotation of the optic axis is converted into a phase modulation with the aid of a reflective device configuration incorporating a 5  μm LC cell, a polarizer, two quarter-wave plates, and a mirror. The residual amplitude modulation is found to be <23%. This flexoelectro-optic phase modulator combination has the potential to enable analog spatial light modulators with very fast frame rates suitable for a range of applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

10 September 2018: A typographical correction was made to paragraph 4 of page 4365.


OSA Recommended Articles
Dynamic response of large tilt-angle flexoelectro-optic liquid crystal modulators

Julian A. J. Fells, Chris Welch, Wing C. Yip, Steve J. Elston, Martin J. Booth, Georg H. Mehl, Timothy D. Wilkinson, and Stephen M. Morris
Opt. Express 27(11) 15184-15193 (2019)

Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices

Julian A. J. Fells, Steve J. Elston, Martin J. Booth, and Stephen M. Morris
Opt. Express 26(5) 6126-6142 (2018)

High speed liquid crystal over silicon display based on the flexoelectro-optic effect

Jing Chen, Stephen M. Morris, Timothy D. Wilkinson, Jon P. Freeman, and Harry J. Coles
Opt. Express 17(9) 7130-7137 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, Opt. Express 16, 2597 (2008).
    [Crossref]
  2. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, Opt. Express 20, 20998 (2012).
    [Crossref]
  3. A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
    [Crossref]
  4. A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
    [Crossref]
  5. Z. Zhang, Z. You, and D. Chu, Light Sci. Appl. 3, 1 (2014).
  6. M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).
  7. J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, Opt. Lett. 20, 2441 (1995).
    [Crossref]
  8. Z. Feng and K. Ishikawa, Opt. Lett. 43, 251 (2018).
    [Crossref]
  9. R. M. Hyman, A. Lorenz, and T. D. Wilkinson, Liq. Cryst. 43, 83 (2016).
    [Crossref]
  10. J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
    [Crossref]
  11. J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, Opt. Express 17, 7130 (2009).
    [Crossref]
  12. J. J. Gil and B. Eusebio, Optik (Stuttgart) 76, 67 (1987).
  13. A. Varanytsia and L. Chien, Sci. Rep. 7, 41333 (2017).
    [Crossref]
  14. G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
    [Crossref]
  15. B. I. Outram and S. J. Elston, Europhys. Lett. 99, 37007 (2012).
    [Crossref]
  16. H. de Vries, Acta Crystallogr. 4, 219 (1951).
    [Crossref]
  17. J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, Opt. Express 26, 6126 (2018).
    [Crossref]
  18. www.eng.ox.ac.uk/smp/repository .

2018 (2)

2017 (2)

A. Varanytsia and L. Chien, Sci. Rep. 7, 41333 (2017).
[Crossref]

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

2016 (1)

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, Liq. Cryst. 43, 83 (2016).
[Crossref]

2015 (1)

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

2014 (1)

Z. Zhang, Z. You, and D. Chu, Light Sci. Appl. 3, 1 (2014).

2012 (2)

2010 (1)

2009 (1)

2008 (1)

2006 (1)

M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).

1995 (1)

1987 (2)

J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
[Crossref]

J. J. Gil and B. Eusebio, Optik (Stuttgart) 76, 67 (1987).

1951 (1)

H. de Vries, Acta Crystallogr. 4, 219 (1951).
[Crossref]

Babakhanova, G.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Bernet, S.

Bewersdorf, J.

Booth, M. J.

Burke, D.

Chen, J.

Chien, L.

A. Varanytsia and L. Chien, Sci. Rep. 7, 41333 (2017).
[Crossref]

Chigrinov, V. G.

M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).

Chu, D.

Z. Zhang, Z. You, and D. Chu, Light Sci. Appl. 3, 1 (2014).

Coles, H. J.

de Vries, H.

H. de Vries, Acta Crystallogr. 4, 219 (1951).
[Crossref]

Dergachev, D. I.

M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).

Elston, S. J.

Eusebio, B.

J. J. Gil and B. Eusebio, Optik (Stuttgart) 76, 67 (1987).

Faulkner, G.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Fells, J. A. J.

Feng, Z.

Freeman, J. P.

Gil, J. J.

J. J. Gil and B. Eusebio, Optik (Stuttgart) 76, 67 (1987).

Gomez, A.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Gould, T. J.

Hyman, R. M.

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, Liq. Cryst. 43, 83 (2016).
[Crossref]

Ishikawa, K.

Jesacher, A.

Johnson, K. M.

Lavrentovich, O. D.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Lorenz, A.

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, Liq. Cryst. 43, 83 (2016).
[Crossref]

Maurer, C.

Meyer, R. B.

J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
[Crossref]

Morris, S. M.

Nastishin, Y. A.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

O’Brien, D.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Outram, B. I.

B. I. Outram and S. J. Elston, Europhys. Lett. 99, 37007 (2012).
[Crossref]

Paladugu, S.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Parsouzi, Z.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Patel, J. S.

J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
[Crossref]

Poshidaev, E. P.

M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).

Quintana, C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Ritsch-Marte, M.

Sato, M.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Schadt, M.

M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).

Schwaighofer, A.

Serati, S. A.

Sharp, G. D.

Shi, K.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Shiyanovskii, S. V.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Sprunt, S.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Stockley, J. E.

Thomsen, B. C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Varanytsia, A.

A. Varanytsia and L. Chien, Sci. Rep. 7, 41333 (2017).
[Crossref]

Wang, H.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Wilkinson, T. D.

You, Z.

Z. Zhang, Z. You, and D. Chu, Light Sci. Appl. 3, 1 (2014).

Zhang, Z.

Z. Zhang, Z. You, and D. Chu, Light Sci. Appl. 3, 1 (2014).

Acta Crystallogr. (1)

H. de Vries, Acta Crystallogr. 4, 219 (1951).
[Crossref]

Europhys. Lett. (1)

B. I. Outram and S. J. Elston, Europhys. Lett. 99, 37007 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. C. Thomsen, and D. O’Brien, IEEE Photonics Technol. Lett. 27, 367 (2015).
[Crossref]

Light Sci. Appl. (1)

Z. Zhang, Z. You, and D. Chu, Light Sci. Appl. 3, 1 (2014).

Liq. Cryst. (2)

M. Schadt, V. G. Chigrinov, D. I. Dergachev, and E. P. Poshidaev, Liq. Cryst. 8292, 1171 (2006).

R. M. Hyman, A. Lorenz, and T. D. Wilkinson, Liq. Cryst. 43, 83 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optik (Stuttgart) (1)

J. J. Gil and B. Eusebio, Optik (Stuttgart) 76, 67 (1987).

Phys. Rev. E (1)

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 1 (2017) .
[Crossref]

Phys. Rev. Lett. (1)

J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
[Crossref]

Sci. Rep. (1)

A. Varanytsia and L. Chien, Sci. Rep. 7, 41333 (2017).
[Crossref]

Other (1)

www.eng.ox.ac.uk/smp/repository .

Supplementary Material (1)

NameDescription
» Dataset 1       Time-resolved retardance and optic-axis angle measurement system for flexoelectro-optic liquid crystal and other birefringent devices.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Three device configurations (I)–(III) of the optical phase modulator. P, polarizer; G, glass; E, transparent electrode; LC, liquid crystal; R, reflective electrode; S, silicon backplane; Q1, Q2, quarter-wave plates. The alignment layers on each side of the LC are omitted for clarity. The LC retardance is as follows: (I) 0.25 0.5 λ , (II) 0.25 λ , and (III) 0.5 λ . (b) Illustration of the flexoelectro-optic effect (i) under no applied electric field and (ii) with an electric field applied into the page.
Fig. 2.
Fig. 2. Simulation of the optical phase modulator (a) phase shift and (b) transmission. (ol-43-18-4362-i001 blue) configuration (I) with LC retardance 0.375 λ ; (ol-43-18-4362-i002 blue) configuration (I) with LC retardance 0.32 λ ; (ol-43-18-4362-i003 red) configuration (II) with LC retardance 0.3 λ ( λ / 20 error); (ol-43-18-4362-i004 black) configuration (III) with LC retardance 0.55 λ ( λ / 20 error).
Fig. 3.
Fig. 3. Experimental arrangement to measure the phase of the proof-of-concept LC optical phase modulator: SH, shutter; ND x , neutral density filter of optical density x ; PC, personal computer; AFG, arbitrary function generator; AMP, amplifier; TC, temperature controller; CAM, camera; DUT, device under test; P, polarizer; Q1; Q2, quarter-wave plates; L1; L2, lenses; M, mirror; BS, non-polarizing beam splitter.
Fig. 4.
Fig. 4. Experimentally captured interference fringes for different voltages applied to the LC optical phase modulator. A 1 kHz amplitude signal was applied to the LC and the camera triggered on one half-cycle of the square wave to record the instantaneous fringe intensity pattern at each voltage level. The red line provides a reference phase.
Fig. 5.
Fig. 5. Experimentally measured data: (a) optical transmission of LC through crossed polarizers (with no other components) under an applied 1 kHz square-wave drive of ± 11    V . The device optic axis at zero electric field was at an orientation of π / 8 from the transmission axis of one of the polarizers. (b) (ol-43-18-4362-i005 blue) fringe data recorded from the camera, (ol-43-18-4362-i006 red) fit to fringe data.
Fig. 6.
Fig. 6. Experimentally extracted phase (left axis) and transmission (right axis) for the LC optical phase modulator. (ol-43-18-4362-i007 red) phase, (ol-43-18-4362-i002 blue) amplitude. Inset: tilt angle of the optic axis (TA) versus voltage for the LC mixture (without any additional components).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E o = PQ 1 ( π 4 ) D ( φ ) Q 2 ( π 4 ) MQ 2 ( π 4 ) D ( φ ) Q 1 ( π 4 ) E i ,

Metrics