Abstract

High-energy, multi-octave supercontinuum (SC) generation in bulk media pumped with picosecond pulses in the mid-infrared, though pivotal in a myriad of applications, poses severe constraints due to wavelength scaling of the critical power criterion and the propensity to induce avalanche-ionization-seeded breakdown mechanisms. Here, we demonstrate a simple experimental geometry, relying on a very low numerical aperture for the pump pulse, and a crystal length commensurate with the Rayleigh length of the focusing geometry, generating a multi-octave, stable SC in yttrium aluminum garnet (YAG). The SC ranges from 500 nm to 3.5 μm (measured at 30  dB with spectral components at wavelengths up to 4.5 μm) when pumped by a 3 ps pulse centered at 2.05 μm in the anomalous dispersion regime. We also investigate the dynamics of filament formation in this interaction regime by monitoring the spectral and temporal evolution of the pulse during its propagation through the length of the crystal.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
White-light generation with sub-ps pulses

Anne-Laure Calendron, Hüseyin Çankaya, Giovanni Cirmi, and Franz X. Kärtner
Opt. Express 23(11) 13866-13879 (2015)

Picosecond pulse generated supercontinuum as a stable seed for OPCPA

Lukáš Indra, František Batysta, Petr Hříbek, Jakub Novák, Zbyněk Hubka, Jonathan T. Green, Roman Antipenkov, Robert Boge, Jack A. Naylon, Pavel Bakule, and Bedřich Rus
Opt. Lett. 42(4) 843-846 (2017)

Carrier-envelope phase stable, 5.4  μJ, broadband, mid-infrared pulse generation from a 1-ps, Yb:YAG thin-disk laser

Ayman Alismail, Haochuan Wang, Najd Altwaijry, and Hanieh Fattahi
Appl. Opt. 56(17) 4990-4994 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
    [Crossref]
  2. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  3. A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, Lith. J. Phys. 57, 113 (2017).
    [Crossref]
  4. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
    [Crossref]
  5. J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, Opt. Express 21, 25210 (2013).
    [Crossref]
  6. H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, Opt. Lett. 40, 1069 (2015).
    [Crossref]
  7. A. Dormidonov, V. Kompanets, S. Chekalin, and V. Kandidov, Opt. Express 23, 29202 (2015).
    [Crossref]
  8. N. Garejev, G. Tamošauskas, and A. Dubietis, J. Opt. Soc. Am. B 34, 88 (2017).
    [Crossref]
  9. A. V. Smith and B. T. Do, Appl. Opt. 47, 4812 (2008).
    [Crossref]
  10. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, Optica 3, 147 (2016).
    [Crossref]
  11. T. Kanai, P. Malevich, S. S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuska, Opt. Lett. 42, 683 (2017).
    [Crossref]
  12. L. von Grafenstein, M. Bock, D. Ueberschaer, K. Zawilski, P. Schunemann, U. Griebner, and T. Elsaesser, Opt. Lett. 42, 3796 (2017).
    [Crossref]
  13. K. Murari, G. J. Stein, H. Cankaya, B. Debord, F. Gérôme, G. Cirmi, O. D. Mücke, P. Li, A. Ruehl, I. Hartl, K.-H. Hong, F. Benabid, and F. X. Kärtner, Optica 3, 816 (2016).
    [Crossref]
  14. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, J. Opt. Soc. Am. B 23, 2317 (2006).
    [Crossref]
  15. L. Indra, F. Batysta, P. Hříbek, J. Novák, Z. Hubka, J. T. Green, R. Antipenkov, R. Boge, J. A. Naylon, P. Bakule, and B. Rus, Opt. Lett. 42, 843 (2017).
    [Crossref]
  16. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
    [Crossref]
  17. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
    [Crossref]
  18. Y.-N. Xu and W. Y. Ching, Phys. Rev. B 59, 10530 (1999).
    [Crossref]
  19. P. Kroetz, A. Ruehl, G. Chatterjee, A.-L. Calendron, K. Murari, H. Cankaya, P. Li, F. X. Kärtner, I. Hartl, and R. J. D. Miller, Opt. Lett. 40, 5427 (2015).
    [Crossref]
  20. Precalibrated commercial spectrometers (Avantes AvaSpec-2048 for 200–1100 nm, Avantes AvaSpec-NIR256-2.0TEC for 1000–2000 nm, and Ocean Optics NIRQuest512-2.5 for 900–2500 nm) and a monochromator (Infrared Systems Development for 2400–4300 nm) were used to measure the SC spectra.
  21. The energy efficiency was estimated with a powermeter (Ophir 12A-P). The energy in the MIR (>2.4  μm, using a long-pass filter) was measured with two energy meters (Coherent J-10MB-LE and Gentec QE-B) to be ∼1  μJ when pumped at >120  μJ and was found to be consistent with spectral integration.
  22. J. J. Pigeon, S. Y. Tochitsky, C. Gong, and C. Joshi, Opt. Lett. 39, 3246 (2014).
    [Crossref]

2017 (5)

2016 (2)

2015 (3)

2014 (1)

2013 (1)

2012 (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

2011 (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

2008 (1)

2007 (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

2006 (2)

2005 (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

1999 (1)

Y.-N. Xu and W. Y. Ching, Phys. Rev. B 59, 10530 (1999).
[Crossref]

Antipenkov, R.

Ashcom, J. B.

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Bakule, P.

Baltuska, A.

Batysta, F.

Baudisch, M.

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, Optica 3, 147 (2016).
[Crossref]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Benabid, F.

Biegert, J.

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, Optica 3, 147 (2016).
[Crossref]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Bock, M.

Boge, R.

Brambilla, E.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

Calendron, A.-L.

Cankaya, H.

Chalus, O.

Chang, C.-L.

Chatterjee, G.

Chekalin, S.

Ching, W. Y.

Y.-N. Xu and W. Y. Ching, Phys. Rev. B 59, 10530 (1999).
[Crossref]

Cirmi, G.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Corti, T.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

Couairon, A.

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, Lith. J. Phys. 57, 113 (2017).
[Crossref]

J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, Opt. Express 21, 25210 (2013).
[Crossref]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

Cousin, S. L.

Darginavicius, J.

Debord, B.

Do, B. T.

Dormidonov, A.

Dubietis, A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Elsaesser, T.

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

Garejev, N.

Gattass, R. R.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Gérôme, F.

Gong, C.

Green, J. T.

Griebner, U.

Grynko, R.

Hartl, I.

Hemmer, M.

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, Optica 3, 147 (2016).
[Crossref]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Holzwarth, R.

Hong, K.-H.

Hoogland, H.

Hríbek, P.

Hubka, Z.

Indra, L.

Ishida, K.

Joshi, C.

Jukna, V.

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, Lith. J. Phys. 57, 113 (2017).
[Crossref]

J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, Opt. Express 21, 25210 (2013).
[Crossref]

Kanai, T.

Kandidov, V.

Kangaparambil, S. S.

Kärtner, F. X.

Kolesik, M.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

Kompanets, V.

Kroetz, P.

Krogen, P.

Li, P.

Liang, H.

Majus, D.

J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, Opt. Express 21, 25210 (2013).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

Malevich, P.

Mazur, E.

Miller, R. J. D.

Mizui, M.

Mücke, O. D.

Murari, K.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

Naylon, J. A.

Novak, O.

Novák, J.

Pigeon, J. J.

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

Pugzlys, A.

Ramírez-Góngora, O. D. J.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

Ruehl, A.

Rus, B.

Sanchez, D.

Schaffer, C. B.

Schunemann, P.

Shim, B.

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Simon-Boisson, C.

Smith, A. V.

Stein, G. J.

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

Suminas, R.

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, Lith. J. Phys. 57, 113 (2017).
[Crossref]

Tamosauskas, G.

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, Lith. J. Phys. 57, 113 (2017).
[Crossref]

Tamošauskas, G.

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Tochitsky, S. Y.

Ueberschaer, D.

Valiulis, G.

von Grafenstein, L.

Weerawarne, D.

Xu, Y.-N.

Y.-N. Xu and W. Y. Ching, Phys. Rev. B 59, 10530 (1999).
[Crossref]

Yamanouchi, K.

Zawilski, K.

Appl. Opt. (1)

Eur. Phys. J. (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, Eur. Phys. J. 199, 5 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Lith. J. Phys. (1)

A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, and A. Couairon, Lith. J. Phys. 57, 113 (2017).
[Crossref]

Nat. Commun. (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, Nat. Commun. 3, 807 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Optica (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[Crossref]

Phys. Rev. B (2)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005).
[Crossref]

Y.-N. Xu and W. Y. Ching, Phys. Rev. B 59, 10530 (1999).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Other (2)

Precalibrated commercial spectrometers (Avantes AvaSpec-2048 for 200–1100 nm, Avantes AvaSpec-NIR256-2.0TEC for 1000–2000 nm, and Ocean Optics NIRQuest512-2.5 for 900–2500 nm) and a monochromator (Infrared Systems Development for 2400–4300 nm) were used to measure the SC spectra.

The energy efficiency was estimated with a powermeter (Ophir 12A-P). The energy in the MIR (>2.4  μm, using a long-pass filter) was measured with two energy meters (Coherent J-10MB-LE and Gentec QE-B) to be ∼1  μJ when pumped at >120  μJ and was found to be consistent with spectral integration.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Calculation of the optical-field-ionization rate W OFI as a function of the intensity I for YAG with a laser of central wavelength λ = 2.05    μm , where ρ 0 denotes the background neutral density. The low-intensity asymptote corresponds to a multi-photon-ionization rate W MPI = σ 11 I 11 . (b) Simulation of the evolution of the plasma density ρ ( t ) as a function of I for the duration of the pump pulse.
Fig. 2.
Fig. 2. (a) Spectral extent of the SC generated in a 15 cm YAG crystal for a pump energy of 150 μJ and NA 0.005 . The inset shows the spatial profile of the pump beam (left) and the SC output (right) in the far field. (b), (c) Self-normalized spectral intensity in logarithmic scale (indicated by the colorbar) as a function of the pump energy E p in the vis-NIR and MIR, respectively. (d), (e) Scaling of the spectral intensity integrated over the wavelength, as well as the standard-deviation fluctuation for vis-NIR and MIR, respectively, as a function of E p . The setup was purged with dry nitrogen, and the humidity was maintained at 3.5%.
Fig. 3.
Fig. 3. Long-term stability of the SC spectrum in the vis-NIR and MIR, as well as the pump, over a period of 20 min at a repetition rate of 1 kHz for a pump energy of 150 μJ and an ambient humidity of 3.5%. The standard deviation of the fluctuations of the vis-NIR as well as the MIR was found to be 1.9%, which is the same as that of the pump.
Fig. 4.
Fig. 4. Snapshots of filaments pumped at 50, 80, and 120 μJ in a 15-cm-long crystal.
Fig. 5.
Fig. 5. SHG-FROG measurement of the pump pulse. (a), (b) Self-normalized measured and retrieved FROG profiles in the logarithmic scale, respectively. (c) Measured (gray shaded area) and retrieved (blue solid line) spectra along with the spectral phase (red dotted line). (d) Retrieved temporal profile (blue solid line) with a pulsewidth of 3.0 ps (FWHM) along with the temporal phase (red dotted line). The retrieval error is 0.3%.
Fig. 6.
Fig. 6. SHG-FROG measurement of the output of a 10-cm-long YAG crystal pumped at 80 μJ, where filament formation has already been initiated at the rear end of the crystal. (a), (b) Self-normalized measured and retrieved FROG profiles in the logarithmic scale, respectively. (c) Measured (gray shaded area) and retrieved (blue solid line) spectra along with the spectral phase (red dotted line). (d) Retrieved temporal profile (blue solid line) along with the temporal phase (red dotted line). The retrieval error is 0.9%.

Metrics