Abstract

A noninvasive method for characterizing Si/Mo thin-film stack thickness and its complex transfer function using common-path optical coherence tomography is proposed, analyzed, and experimentally demonstrated. A laser-produced plasma (LPP)-based extreme ultraviolet (EUV) source was excited by a four-stage nanosecond Yb:fiber laser amplifier with a pulse energy of 1.01 mJ. The tabletop LPP EUV source was compact and stable for generating the EUV interference fringes. The measured complex transfer function of the Si/Mo stack was verified near the pristine 13.5-nm wavelength range.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probing multilayer stack reflectors by low coherence interferometry in extreme ultraviolet

Sébastien de Rossi, Denis Joyeux, Pierre Chavel, Nelson de Oliveira, Marieke Richard, Christophe Constancias, and Jean-Yves Robic
Appl. Opt. 47(12) 2109-2115 (2008)

Extreme ultraviolet multilayer mirror with near-zero IR reflectance

W. A. Soer, P. Gawlitza, M. M. J. W. van Herpen, M. J. J. Jak, S. Braun, P. Muys, and V. Y. Banine
Opt. Lett. 34(23) 3680-3682 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription