Abstract

In this Letter, we propose a hybrid dual-comb interferometer (DCI) with a free-running mode-locked laser and an electro-optic frequency comb. The mutual coherence of this DCI is achieved by using an injection locking technique without any complicated phase-locking loops or post data processing algorithms. The proposed architecture is validated by resolving more than 10,000 comb lines of 250 MHz spacing with a refresh rate of 500 kHz. This combination of two kinds of optical frequency comb sources is suitable for wideband spectroscopic applications, where moderate spectral resolutions as well as high refresh rates are necessary.

© 2018 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  2. I. Coddington, N. Newbury, and W. Swann, Optica 3, 414 (2016).
    [Crossref]
  3. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
    [Crossref]
  4. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [Crossref]
  5. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. A 82, 043817 (2010).
    [Crossref]
  6. A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
    [Crossref]
  7. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, Opt. Express 20, 21932 (2012).
    [Crossref]
  8. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, Opt. Express 24, 21833 (2016).
    [Crossref]
  9. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. X. Jiang, X. Yang, and J. S. Zhu, Opt. Express 19, 1168 (2011).
    [Crossref]
  10. S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, Appl. Phys. Lett. 108, 231104 (2016).
    [Crossref]
  11. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, Opt. Lett. 39, 2688 (2014).
    [Crossref]
  12. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, Optica 4, 406 (2017).
    [Crossref]
  13. V. Durán, P. A. Andrekson, and V. Torres-Company, Opt. Lett. 41, 4190 (2016).
    [Crossref]
  14. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and F. Plusquellic, Opt. Express 24, 10424 (2016).
    [Crossref]
  15. V. Durán, S. Tainta, and V. Torres-Company, Opt. Express 23, 30557 (2015).
    [Crossref]
  16. B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, Opt. Express 24, 14986 (2016).
    [Crossref]
  17. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
    [Crossref]
  18. S. Wang, X. Fan, B. Xu, and Z. He, Opt. Lett. 42, 3984 (2017).
    [Crossref]
  19. S. Wang, X. Fan, Q. Liu, and Z. He, in Proceedings of the International Conference on Laser and Electro-Optics (2017), paper STH3L.7.
  20. D. S. Wu, R. Slavik, G. Marra, and D. J. Richardson, J. Lightwave Technol. 31, 2287 (2013).
    [Crossref]
  21. D. S. Wu, D. J. Richardson, and R. Slavík, Optica 2, 18 (2015).
    [Crossref]
  22. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, J. Lightwave Technol. 21, 3043 (2003).
    [Crossref]
  23. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, Opt. Lett. 33, 890 (2008).
    [Crossref]
  24. N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, Opt. Express 22, 29152 (2014).
    [Crossref]

2017 (2)

2016 (7)

2015 (2)

2014 (3)

2013 (1)

2012 (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, Opt. Express 20, 21932 (2012).
[Crossref]

2011 (1)

2010 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

2008 (2)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, Opt. Lett. 33, 890 (2008).
[Crossref]

2004 (1)

2003 (1)

Acedo, P.

Andrekson, P. A.

Araki, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Beha, K.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

Bielska, K.

Boudreau, S.

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, Optica 3, 414 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Coillet, A.

Cole, D. C.

de Dios, C.

Del’Haye, P.

Deschênes, J.-D.

Diddams, S. A.

Douglass, K. O.

Durán, V.

Fan, X.

S. Wang, X. Fan, B. Xu, and Z. He, Opt. Lett. 42, 3984 (2017).
[Crossref]

S. Wang, X. Fan, Q. Liu, and Z. He, in Proceedings of the International Conference on Laser and Electro-Optics (2017), paper STH3L.7.

Fleisher, A. J.

Fukushima, S.

Genest, J.

Gohle, C.

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

He, Z.

S. Wang, X. Fan, B. Xu, and Z. He, Opt. Lett. 42, 3984 (2017).
[Crossref]

S. Wang, X. Fan, Q. Liu, and Z. He, in Proceedings of the International Conference on Laser and Electro-Optics (2017), paper STH3L.7.

Hébert, N. B.

Hindle, F.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Hodges, J. T.

Holzwarth, R.

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

Hsieh, Y.-D.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Hu, G.

Inaba, H.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Iyonaga, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Jerez, B.

Jiang, Y. X.

Kawanishi, T.

Keilmann, F.

Kieu, K.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, Appl. Phys. Lett. 108, 231104 (2016).
[Crossref]

Li, C.

Liu, L.

Liu, Q.

S. Wang, X. Fan, Q. Liu, and Z. He, in Proceedings of the International Conference on Laser and Electro-Optics (2017), paper STH3L.7.

Liu, Y.

Long, D. A.

Marra, G.

Martín-Mateos, P.

Maxwell, S. E.

Mehravar, S.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, Appl. Phys. Lett. 108, 231104 (2016).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

Minoshima, K.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Muramoto, Y.

Newbury, N.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Norwood, R. A.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, Appl. Phys. Lett. 108, 231104 (2016).
[Crossref]

Pan, Y.

Papp, S. B.

Peyghambarian, N.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, Appl. Phys. Lett. 108, 231104 (2016).
[Crossref]

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

Plusquellic, D. F.

Plusquellic, F.

Potvin, S.

Prior, E.

Reed, Z. D.

Richardson, D. J.

Roy, J.

Sakaguchi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Sakamoto, T.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Seeds, A. J.

Silva, C. F. C.

Slavik, R.

Slavík, R.

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Tainta, S.

Torres-Company, V.

Tsuchiya, M.

Wang, S.

S. Wang, X. Fan, B. Xu, and Z. He, Opt. Lett. 42, 3984 (2017).
[Crossref]

S. Wang, X. Fan, Q. Liu, and Z. He, in Proceedings of the International Conference on Laser and Electro-Optics (2017), paper STH3L.7.

Wu, D. S.

Xu, B.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

Yang, X.

Yasui, T.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, Opt. Express 24, 21833 (2016).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Yokoyama, S.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Zhao, B.

Zhao, X.

Zheng, Z.

Zhu, J. S.

Appl. Phys. Lett. (1)

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, Appl. Phys. Lett. 108, 231104 (2016).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (2)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, Nat. Photonics 10, 27 (2016).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Optica (3)

Phys. Rev. A (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. A 82, 043817 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Sci. Rep. (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, Sci. Rep. 4, 3816 (2014).
[Crossref]

Other (1)

S. Wang, X. Fan, Q. Liu, and Z. He, in Proceedings of the International Conference on Laser and Electro-Optics (2017), paper STH3L.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup. The abbreviations represent a mode-locked laser (MLL), two optical bandpass filters (BPFs), an acoustic-optic modulator (AOM), two circulators (CIRs), a chirped fiber Bragg grating (CFBG), a radio frequency synthesizer (RF), a signal generator (SG), an erbium-doped fiber amplifier (EDFA), an electro-optic frequency comb generator (EOFCG), and a photodetector (PD) with 9.5 GHz bandwidth. The RF and the SG are synchronized to a common clock oscillator, which is obtained from the repetition rate of the MLL. Green lines denote the fiber optics, while blue lines represent electronic wires.
Fig. 2.
Fig. 2. (a) Beat note between the output of the slave laser with a narrow linewidth fiber laser, the RF spectrum is captured by an electrical spectrum analyzer (ESA) at a resolution bandwidth of 10 kHz. (b) The residual frequency variation of the beat signal between the injection-locked slave laser and the original MLL. The measurement bandwidth is 80 MHz. Frequency variation is measured by a frequency counter at a gate time of 50 ms.
Fig. 3.
Fig. 3. (a) Spectrum of the EOFC generated by a DD-MZM, which is measured by an optical spectrum analyzer (Yokogawa, AQ670C). (b) A small part of the RF comb from the hybrid DCI with an average SNR of 48 dB. The line spacing of the RF comb is 3 MHz, which is also the refresh rate of the hybrid DCI. (c) Spectrum of the zeroth tone and the eighth tone. The close-up shows the clear line shape of the eighth tone, which illustrates the naturally locked phase relationship of the hybrid DCI.
Fig. 4.
Fig. 4. (a) Schematic of the generation of wideband EOFC, the abbreviations represent a waveshaper (WS), a phase shifter (PS), and a segment of high nonlinear fiber (HNLF). (b) Optical spectrum of self-phase modulation induced EOFC, dense MLL comb, and seed comb generated directly by the DD-MZM.
Fig. 5.
Fig. 5. (a) Raw RF comb measured by an ESA. Enlarged illustrations of the pink shadowed area show a certain series of comb teeth. (b) Resolved EOFC after the demultiplexing method. Magnified view of 17 comb lines with 250 MHz evenly spaced optical frequency. (c) Spectrum of the 0th, 20th, and 40th tone. The sidelobes shown in the figure are supposed to be caused by the acoustic noise.